
MATH2400 Assignment 4 Solutions

Question 1:

We first note that

∞∑
n=1

1

n3

converges by the p test. Now, let x ∈ R be arbitrary. Then:

0 <
e−x

2

n3 + x2
≤ 1

n3 + x2

≤ 1

n3
.

So by the comparison test, the series converges for all x ∈ R. The series converges uniformly by the
Weierstrass M -test. That is, given a sequence of functions fn, if there is a sequence of positive numbers
Mn satisfying, for all x ∈ R,

1) |fn(x)| ≤Mn

2)

∞∑
n=1

Mn <∞,

then the series

∞∑
n=1

fn(x)

converges uniformly. Here, the sequence (Mn) = 1
n3 , and as shown above, |fn(x)| ≤Mn for all x.

If you wanted to show the result directly: Define

fk(x) =

k∑
n=1

e−x
2

n3 + x2
,

with limit function

lim
k→∞

fk(x) =: f(x) =

∞∑
n=1

e−x
2

n3 + x2
.

Note we know f(x) exists since we have just proven pointwise convergence. In order to show uniform
convergence, we are required to show the following: Given ε > 0, there exists N ∈ N such that for all
x ∈ R

|fk(x)− f(x)| < ε,

whenever k > N .

1



Let ε > 0 be given. Since
∑∞

n=1
1
n3 converges, by the definition of convergence of an infinite series,

there exists some N0 ∈ N such that

ε >

∣∣∣∣∣
∞∑

n=1

1

n3
−

k∑
n=1

1

n3

∣∣∣∣∣
=

∞∑
n=k+1

1

n3
, (1)

for all k > N0. Set N > N0 and let k > N . Then, for any x ∈ R, we have

|fk(x)− f(x)| =

∣∣∣∣∣
∞∑

n=k+1

e−x
2

n3 + x2

∣∣∣∣∣
≤

∞∑
n=k+1

1

n3

< ε,

by (1) since k > N > N0. We note that the choice of N was independent of the choice of x ∈ R. That
is, the convergence is uniform. (One may see this argument is really why the Weierstrass M test works).
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Question Two:

We first note that each fn is continuous since it is the composition of continuous functions. Furthermore,
fn converges pointwise to a limit function f since

lim
n→∞

fn(x) = lim
n→∞

x2n

1 + x2n

= lim
n→∞

[
1− 1

1 + x2n

]

=


0, 0 < x < 1,
1
2 , x = 1,

1, x > 1,

=: f(x).

We recall the definition of uniform convergence. Let X ⊆ R. A sequence (fn : X → R)∞n=1 of functions
converges uniformly to a function f : X → R if given ε > 0, there exists N ∈ N such that for any x ∈ X,

|fn(x)− f(x)| < ε,

whenever n > N .

We note in this instance, 0 ≤ fn(x), f(x) ≤ 1. Thus, to show uniform convergence, we need only
consider ε ∈ (0, 1), since the case of ε ≥ 1 will hold automatically.

Uniform convergence on [0, a]:

Let a ∈ (0, 1) be arbitrary. Set N = log ε
2 log a = 1

2 loga ε. Note that N > 0 since both 0 < a, ε < 1.

Let n > N . Then for any x ∈ [0, a],

|fn(x)− f(x)| =
∣∣∣∣ x2n

1 + x2n
− 0

∣∣∣∣
=

x2n

1 + x2n

≤ x2n

≤ a2n, since x ≤ a,

< aloga ε, since a < 1 and n > N,

= ε.

So fn → 0 uniformly on [0, a].
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Uniform convergence on [b,∞):

Let b ∈ (1,∞) be arbitrary. Set N > − 1
2
log ε
log b = − 1

2 logb ε. Note that N > 0 since b > 1 and 0 < ε < 1.

Set n > N . Then for any x ∈ [b,∞),

|f(x)− fn(x)| =
∣∣∣∣1− x2n

1 + x2n

∣∣∣∣
=

1

1 + x2n

<

(
1

x

)2n

≤
(

1

b

)2n

, since
1

b
≥ 1

x

<

(
1

b

)− logb ε

, since 1/b < 1 and n > N,

= ε.

So fn → 1 uniformly on [b,∞).

Does the sequence of functions converge uniformly on [0,∞)?

No.

In class, you proved the following theorem:

If {fn}∞n=1 is a sequence of continuous functions on X ⊂ R and fn → f uniformly on X, then f is
continuous. By contraposition of this statement, this is equivalent to: If f is not continuous then either
the sequence of functions {fn}∞n=1 is not continuous or fn does not converge uniformly to f . Now, if
fn → f uniformly, this limit function must also be its pointwise limit function. In our case, the pointwise
limit function is not continuous. Thus, either the sequence of functions is not continuous, or the sequence
does not converge uniformly to f . Since each fn is continuous for all x ∈ [0,∞), it must be that the
sequence does not converge uniformly.
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Here is a different, more direct, argument to show the sequence of functions doesn’t converge uniformly:

Suppose fn → f uniformly on [0,∞). Then it must follow fn → f uniformly on [0, 1). So, by defi-
nition of uniform convergence, given ε > 0, there exists some K ∈ N such that for all x ∈ [0, 1),

|fK(x)− f(x)| < ε

⇐⇒
∣∣∣∣ x2K

1 + x2K
− 0

∣∣∣∣ < ε, since f ≡ 0 on [0, 1),

⇐⇒ x2K

1 + x2K
< ε. (2)

Let ε = 1
4 . Since (2) must hold for all x ∈ [0, 1), it must hold for some(

1

3

) 1
2K

< x < 1.

But then,

x >

(
1

3

) 1
2K

⇐⇒ x2K >
1

3

⇐⇒ 3x2K > 1

⇐⇒ 4x2K > 1 + x2K

⇐⇒ x2K

1 + x2K
>

1

4

= ε.

Which contradicts (2).
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Question Three:

There does not exist such a function. To prove this, we assume for sake of contradiction that there
exists a continuously differentiable function on [1, 5] such that f(1) < 0, f(5) > 3 and f ′(x) ≤ e−f(x).

Since f is differentiable, it is continuous. Thus, by the Intermediate Value Theorem, there exists at
least one x ∈ (1, 5) such that f(x) = 2. We now define

D := {x ∈ (1, 5)|f(x) = 2}.

Since D is bounded, x0 := supD exists. We now claim x0 ∈ D. Proof: As discussed in lectures, for
any ε > 0, there exists x ∈ D such that x > x0 − ε. From this fact, one is able to construct a sequence
(xn) ⊂ D such that xn → x0. Then, since f is continuous,

2 = f(xn)→ f(x0),

as n→∞. Since the limit of a constant is the constant itself, it follows that f(x0) = 2 and thus x0 ∈ D.
We now claim: f(x) ≥ 2 for any x ∈ (x0, 5). Proof: Suppose that f(x1) < 2 for some x1 ∈ (x0, 5). Then,
by IVT, there exists x2 ∈ (x1, 5) such that f(x2) = 2. But then x2 ∈ D and x2 > x0. Contradiction -
since x0 is the supremum of D. So f(x) ≥ 2 for all x ∈ (x0, 5). Since f is differentiable on [1, 5], it is
differentiable on [x0, 5]. Thus, it obeys the Mean Value Theorem on [x0, 5]. That is, there exists some
c ∈ (x0, 5) such that

f ′(c) =
f(5)− f(x0)

5− x0

>
3− 2

5− x0
, since f(5) > 3 and f(x0) = 2,

>
1

5
, since 1 < x0 < 5. (3)

However, by assumption, f also satisfies the property that f ′(x) ≤ e−f(x) for all x ∈ [1, 5]. So,

f ′(c) ≤ e−f(c)

≤ e−2, since f(x) ≥ 2, ∀x ∈ (x0, 5),

<
1

7

<
1

5
.

This is a contradiction. Thus, no such function satisfying the desired properties exists.
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Here is another method. Suppose such a function exists. That is, suppose there exists a smooth function
f such that

f(1) < 0 (4)

f(5) > 3 (5)

f ′(x) ≤ e−f(x), ∀x ∈ [1, 5]. (6)

Consider the function g(x) := ef(x). Then, g is differentiable since it is a composition of differentiable
functions. Thus, g obeys the mean value theorem on [1, 5]. So, there exists some c ∈ (1, 5) such that

g′(c) =
g(5)− g(1)

5− 1

=
ef(5) − ef(1)

4

>
e3 − 1

4

> 1, (7)

by assumptions (4) and (5).

However, we may calculate g′(c) by the chain rule. We see

g′(c) = f ′(c)ef(c)

≤ e−f(c)ef(c)

= 1, (8)

by assumption (6). But (7) and (8) yield a contradiction. So, there does not exist such a function.
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Question Four:

Define the function

g(x) :=

{
x, x ∈ Q,
0, x /∈ Q.

Claim: limx→0 g(x) = 0.

Proof: To prove the claim, we are required to show, given ε > 0, there exists δ > 0 such that

|x| < δ ⇒ |g(x)| < ε.

We immediately see

|g(x)| ≤ |x|,

since equality holds when x is rational, and |g(x)| = 0 < |x| when x is irrational. Take δ = ε, and let
|x| < δ. Then

|g(x)| ≤ |x|

< δ = ε.

Thus, limx→0 g(x) = 0.

In order to show differentiability of f at 0, we are required to show

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x

exists. But then, the above limit is just

lim
x→0

f(x)

x
= lim

x→0

{
x2

x , x ∈ Q,
0, x /∈ Q.

= lim
x→0

g(x)

= 0,

as shown above. Thus, f is differentiable at 0 with f ′(0) = 0.
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