# MATH2400 Assignment 3 Solutions 

30th April 2014

## 1 Question 1

### 1.1 Question 1(a)

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=e^{-x}
$$

is not uniformly continuous (on $\mathbb{R}$ ).
Proof. Set $\varepsilon \equiv 1$ and let $\delta>0$ be given.
Let the sequences $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ be defined as

$$
\begin{aligned}
x_{n} & \equiv \log (n+1) \text { and } \\
y_{n} & \equiv \log (n),
\end{aligned}
$$

respectively. Then

$$
\left|x_{n}-y_{n}\right|=\log \left(\frac{n+1}{n}\right)=\log \left(1+\frac{1}{n}\right) \quad \forall n \in \mathbb{N} .
$$

Since $\log (1+1 / n) \rightarrow 0$ as $n \rightarrow \infty$, there exists an $N \in \mathbb{N}$ such that for each $n>N$ we have $\log (1+1 / n)<\delta$ and consequently

$$
\left|x_{n}-y_{n}\right|<\delta \quad \forall n>N,
$$

but

$$
\left|e^{-x_{n}}-e^{-y_{n}}\right|=|-n-1+n|=1 \geq \varepsilon .
$$

Thus, $f$ is not uniformly continuous on $\mathbb{R}$.

### 1.2 Question 1(b)

The function $f:[0, \infty) \rightarrow \mathbb{R}$ defined as

$$
f(x) \equiv e^{-x^{2}}
$$

is uniformly continuous (on $[0, \infty)$ ).

Proof. Note that the function is a continuous function that is (strictly) monotonically decreasing to zero. It is a continuous function because it is a composition of continuous functions. It is monotonically decreasing because:

$$
x_{2}>x_{1} \geq 0 \Rightarrow x_{2}^{2}>x_{1}^{2} \Rightarrow e^{-x_{2}^{2}}<e^{-x_{1}^{2}}
$$

For all $x \in[0, \infty)$ we have $f(x)>0$ and since $f$ is strictly monotonically decreasing we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f(x)=0 \tag{1}
\end{equation*}
$$

Given $\varepsilon>0$ we wish to show that there exists $\delta=\delta(\varepsilon)>0$ such that if for all $x, y \geq 0$ we have $|x-y|<\delta$ then

$$
|f(x)-f(y)|<\varepsilon
$$

Furthermore, note that $0<f \leq 1$ so wlog (without loss of generality) we need not consider the case that $\varepsilon \geq 1$ as uniform continuity follows for any $\delta>0$ in this case.

Note that $f([0, \infty))=(0,1]$, i.e. $f$ is surjective. One can prove surjectivity as an application of the IVT. We know that $f(0)=1$ so given $y \in(0,1)(1)$ implies there exists an $x_{1}>0$ such that

$$
f\left(x_{1}\right)<\frac{y}{2}
$$

We know the function is continuous on $\left[0, x_{1}\right]$ with $f(0)>y>y / 2>f\left(x_{1}\right)$. Consequently, by the IVT, there exists an $x_{0} \in\left(0, x_{1}\right)$ such that $f\left(x_{0}\right)=y$. The monotonicity property implies it is injective. Thus $f:[0, \infty) \rightarrow(0,1]$ is bijective.

Let $1>\varepsilon>0$ be given. By bijectivity of $f$ there exists a unique $x_{0}>0$ such that $f\left(x_{0}\right)=\varepsilon / 2$.

The function $f$ is continuous on $\left[0, x_{0}\right]$ and therefore uniformly continuous on $\left[0, x_{0}\right]$ (this result should have been proved in class). Consequently, there exists a $\delta^{*}>0$ such that for all $x, y \in\left[0, x_{0}\right]$ we have

$$
\begin{equation*}
|x-y|<\delta^{*} \Rightarrow|f(x)-f(y)|<\frac{\varepsilon}{2} \tag{2}
\end{equation*}
$$

Since $f \downarrow 0$, for any $x, y \geq x_{0}$ the RHS of (2) is always true, so it suffices to choose $\delta^{*}$.
So now consider the case that $I$ is an interval of the form $(a, b)$ or $[a, b)$ or $(a, b]$ such that $0 \leq a<x_{0}, b>x_{0}$ and $b-a<\delta^{*}$. Then for all $x, y \in I$ we have $|x-y|<\delta^{*}$ and this implies via (2) that

$$
|f(x)-f(y)| \leq\left|f(x)-f\left(x_{0}\right)\right|+\left|f\left(x_{0}\right)-f(y)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Thus having considered all possible cases we have shown that if an arbitrary interval $(x, y) \subset[0, \infty)$ is such that $|x-y|<\delta^{*}$ then we have that

$$
|f(x)-f(y)|<\varepsilon
$$

This argument can be replicated for any $\varepsilon>0$ so $f$ is uniformly continuous on $[0, \infty)$.

## 2 Question 2

We wish to show that there exists a $c \in \mathbb{R}$ such that

$$
2\left(\frac{2+|c|}{1+|c|}\right)^{1+|c|}=5
$$

Proof. Consider the function $f:[0,100] \rightarrow \mathbb{R}$ defined as

$$
f(x) \equiv\left(\frac{2+|x|}{1+|x|}\right)^{1+|x|}
$$

Then $f$ is a composition of continuous functions and hence continuous itself. Moreoever, we have

$$
2=f(0)<\frac{5}{2}<f(100)=\left(\frac{102}{101}\right)^{101} .
$$

Thus, by the intermediate value theorem, there exists a $c \in(0,100)$ such that

$$
f(c)=\frac{5}{2}
$$

which is true iff.

$$
2 f(c)=5 .
$$

## 3 Question 3

### 3.1 Question 3(a)

We want to show:

$$
f \in C(\mathbb{R} ; \mathbb{R}) \Rightarrow|f| \in C(\mathbb{R} ; \mathbb{R})
$$

Proof. Given $x \in \mathbb{R}$ let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ be a sequence such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then by the reverse triangle inequality and the continuity of $f$ at $x$ we have

$$
\left|\left|f\left(x_{n}\right)\right|-|f(x)|\right| \leq\left|f\left(x_{n}\right)-f(x)\right| \rightarrow 0 \quad \text { as }(n \rightarrow \infty) .
$$

That is

$$
x_{n} \rightarrow x \Rightarrow\left|f\left(x_{n}\right)\right| \rightarrow|f(x)| .
$$

This argument is true for any $x \in \mathbb{R}$ whence we conclude $|f|$ is continuous on $\mathbb{R}$.

### 3.2 Question 3(b)

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given below:

$$
f(x) \equiv \begin{cases}1 & x \in \mathbb{R} \backslash \mathbb{Q} \\ -1 & x \in \mathbb{Q}\end{cases}
$$

is discontinuous everywhere but $|f(x)| \equiv 1$ is continuous on $\mathbb{R}$. We give the proof below for reference only, that is, it is not required as part of the solution.

Proof. Constant functions are clearly continuous. We will show that $f$ is actually discontinuous everywhere. If $x \in \mathbb{Q}$ then

$$
x_{n} \equiv x+\frac{\pi}{n} \in \mathbb{R} \backslash \mathbb{Q} \quad \forall n \in \mathbb{N}
$$

and as $n \rightarrow \infty$ we have $x_{n} \rightarrow x$ but

$$
f\left(x_{n}\right)=1 \rightarrow 1 \neq-1=f(x)
$$

so $f$ is discontinuous on $\mathbb{Q}$. If $x \in \mathbb{R} \backslash \mathbb{Q}$ then $x \in[N, N+1]$ for some unique $N \in \mathbb{Z}$. Given $n \in \mathbb{N}$ we can write $[N, N+1]$ as $\cup_{j=1}^{n+1}\left[N+\frac{j}{n+1}\right]=\bigcup_{j=1}^{n+1} I_{j}$ and construct a sequence of rational numbers that get arbitrarily close to $x$ as follows:

$$
a_{n} \equiv N+\frac{j}{n+1}
$$

where $j$ is an element in $\{1,2,3, \ldots, n+1\}$ such that

$$
\left|N+\frac{j}{n+1}-x\right|=\min _{k \in\{1,2, \ldots, n+1\}}\left|N+\frac{k}{n+1}-x\right| .
$$

Then for each $n \in \mathbb{N}$ we have $a_{n} \in \mathbb{Q}$ and $\left|a_{n}-x\right| \rightarrow 0$ as $n \rightarrow \infty$ by the above construction but

$$
-1=f\left(a_{n}\right) \rightarrow-1 \neq 1=f(x)
$$

Thus, $f$ is also discontinuous on $\mathbb{R} \backslash \mathbb{Q}$, and consequently, $f$ is discontinuous everywhere.

## 4 Question 4

We want to show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at 0 and satisfies

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \quad \forall x, y \in \mathbb{R} \tag{3}
\end{equation*}
$$

then $f$ is continuous on all of $\mathbb{R}$.
Proof. Firstly, for any $x, y \in \mathbb{R}$, (3) implies

$$
f(x)=f(x-y+y)=f(x-y)+f(y),
$$

and therefore

$$
\begin{equation*}
f(x)-f(y)=f(x-y) \quad \forall x, y \in \mathbb{R} \tag{4}
\end{equation*}
$$

In particular, for $x=y$ we have $f(0)=0$.
Now, given any $x \in \mathbb{R}$, let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ be a sequence such that $\lim _{n \rightarrow \infty}\left(x_{n}-x\right)=0$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f\left(x_{n}\right)-f(x) & =\lim _{n \rightarrow \infty}\left(f\left(x_{n}\right)-f(x)\right) \\
& =\lim _{n \rightarrow \infty} f\left(x_{n}-x\right) \quad \text { via }(4) \\
& =f(0) \\
& =0 \quad(\text { by cty. of } f \text { at } 0) .
\end{aligned}
$$

Therefore, we have shown given any $x \in \mathbb{R}$, if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is any sequence such that $x_{n} \rightarrow x$ then we have $f\left(x_{n}\right) \rightarrow f(x)$. Hence, $f$ is continuous on $\mathbb{R}$.

## 5 Question5

### 5.1 Question 5(a)

We want to show if $f, g \in C(I ; \mathbb{R})$ are uniformly continuous and bounded then $f g: I \rightarrow \mathbb{R}$ is uniformly continuous on $I$.

Proof. Since each function is bounded let $M \equiv \sup _{x \in I}|f(x)|$ and $N \equiv \sup _{y \in I}|g(y)|$. Without loss of generality, we can assume that $M$ and $N$ are not identically zero, otherwise $f g$ would be the zero function which is uniformly continuous on $I$.

Given $\varepsilon>0$, the uniform continuity of $f$ implies there exists a $\delta_{f}>0$ such that:

$$
\begin{equation*}
\forall x, y \in I:|x-y|<\delta_{f} \Rightarrow|f(x)-f(y)|<\frac{\varepsilon}{2 N} \tag{5}
\end{equation*}
$$

and the uniform continuity of $g$ implies there exists a $\delta_{g}>0$ such that

$$
\begin{equation*}
\forall x, y \in I:|x-y|<\delta_{g} \Rightarrow|g(x)-g(y)|<\frac{\varepsilon}{2 M} . \tag{6}
\end{equation*}
$$

Consequently, for $\delta<\min \left\{\delta_{f}, \delta_{g}\right\}$ we have that if $x, y \in I:|x-y|<\delta$ then both (5) and (6) are true, which in turn implies:

$$
\begin{aligned}
|f(x) g(x)-f(y) g(y)| & =|f(x) g(x)-f(x) g(y)+g(y) f(x)-g(y) f(y)| \\
& \leq|f(x)||g(x)-g(y)|+|g(y)||f(x)-f(y)| \\
& <M \frac{\varepsilon}{2 M}+N \frac{\varepsilon}{2 N}=\varepsilon .
\end{aligned}
$$

This argument is valid for any $\varepsilon>0$, thus the product $f g$ is uniformly continuous on $I$.

### 5.2 Question 5(b)

The functions $f, g \in C([0 \infty) ; \mathbb{R})$ given below:

$$
\begin{aligned}
f(x) & \equiv x \\
g(x) & \equiv-x .
\end{aligned}
$$

are each uniformly continuous on $[0, \infty)$ but the product

$$
f(x) g(x)=-x^{2}
$$

is not uniformly continuous on $[0, \infty)$. We give the proof below for reference only, that is, it is not required as part of the solution.

Proof. The proof that $f$ and $g$ are uniformly continuous follows immediately by choosing $\delta=\varepsilon$ in the definition of uniform continuity.

To show that the product is not uniformly continuous, fix $\varepsilon=1$ and let $\delta>0$ be given. Let $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ be the following sequences:

$$
\begin{aligned}
x_{n} & \equiv \sqrt{n+1} \\
y_{n} & \equiv \sqrt{n} .
\end{aligned}
$$

Then

$$
\left|x_{n}-y_{n}\right|=|\sqrt{n+1}-\sqrt{n}| \frac{|\sqrt{n+1}+\sqrt{n}|}{|\sqrt{n+1}+\sqrt{n}|}=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}} \quad \forall n \in \mathbb{N} .
$$

Since $1 / \sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$ there exists an $N \in \mathbb{N}$ such that

$$
\left|x_{n}-y_{n}\right|<\frac{1}{\sqrt{n}}<\delta \quad \forall n>N
$$

but

$$
\left|-x_{n}^{2}+y_{n}^{2}\right|=|-n-1+n|=1 \geq \varepsilon .
$$

Thus the product is not uniformly continuous on $[0, \infty)$

