Math 2400 Assignment 2 - Solutions

- 1. The map that sends a triple (p, q, r) to the integer $2^{p}3^{q}5^{r}$ is an injection. This is a consequence of the fundamental theorem of arithmetic - every integer admits a unique factorisation into a product of powers of prime numbers so if $2^{p_1}3^{q_1}5^{r_1} = 2^{p_2}3^{q_2}5^{r_2}$ then $(p_1, q_1, r_1) = (p_2, q_2, r_2)$.
- 2. Let

$$f_n(x) = \lim_{k \to \infty} (\cos n! \pi x)^{2k}.$$

If $x \in \mathbb{Q}$, say x = p/q where $p, q \in \mathbb{Z}$ and $q \neq 0$, then for $n \geq q$,

$$n!x = 1 \cdot 2 \cdot \dots \cdot (q-1) \cdot q \cdot (q+1) \cdot \dots \cdot (n-1) \cdot n \cdot \frac{p}{q}$$
$$= 1 \cdot 2 \cdot \dots \cdot (q-1) \cdot (q+1) \cdot \dots \cdot (n-1) \cdot n \cdot p$$

which is an integer. Therefore

$$\cos n!\pi x = \begin{cases} 1 & \text{if } n!x \text{ is even} \\ -1 & \text{if } n!x \text{ is odd,} \end{cases}$$

so we know that whenever $n \ge q$, $f_n(x) = 1$. Consequently,

$$\lim_{n \to \infty} f_n(x) = 1$$

Otherwise if x is irrational, $n!x \notin \mathbb{Z}$ so $|\cos n!\pi x| < 1$ and for any fixed n the geometric progression $(\cos n!\pi x)^{2k} \to 0$ as $k \to \infty$. Therefore $f_n(x) = 0$ for all n and

$$\lim_{n \to \infty} f_n(x) = 0.$$

3. Let $\lim_{n\to\infty} a_n = a$ and fix $\epsilon > 0$. Then there is an $N \in \mathbb{N}$ such that whenever $n \ge N$, we have $|a_n - a| < \epsilon$. Since $a_n \in [0, 1]$ for all n we know that $|a_n - 1/2| \le 1/2$, which implies

$$\begin{aligned} |a - 1/2| &= |a - a_n + a_n - 1/2| \\ &\leq |a_n - a| + |a_n - 1/2| \\ &< \epsilon + 1/2. \end{aligned}$$

Since ϵ was arbitrary, it must be the case that $|a - 1/2| \le 1/2$, or in other words $a \in [0, 1]$.

4. (a) Since $(x_n)_{n=1}^{\infty}$ is bounded we may define

$$S_n = \sup\{x_i : i \ge n\}$$
$$I_n = \inf\{x_i : i \ge n\}.$$

Furthermore

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} S_n \text{ and } \liminf_{n \to \infty} x_n = \lim_{n \to \infty} I_n$$

both exist, which implies that

$$\limsup_{n \to \infty} x_n - \liminf_{n \to \infty} x_n = \lim_{n \to \infty} (S_n - I_n).$$

For all $m \ge n$ we have $I_n \le x_m \le S_n$, so $S_n - I_n \ge 0$ for all n and we conclude (using the same technique employed in question 3) that

$$\lim_{n \to \infty} (S_n - I_n) \ge 0 \implies \limsup_{n \to \infty} x_n \ge \liminf_{n \to \infty} x_n.$$

(b) Set $x_n = (-1)^n \left(1 + \frac{1}{n}\right)$. Then since $1 + \frac{1}{n}$ is monotone decreasing in n, using the definitions above we have:

$$S_n = \begin{cases} 1 + \frac{1}{n} & \text{if } n \text{ is even} \\ 1 + \frac{1}{n+1} & \text{if } n \text{ is odd} \end{cases}$$
$$I_n = \begin{cases} -1 - \frac{1}{n+1} & \text{if } n \text{ is even} \\ -1 - \frac{1}{n} & \text{if } n \text{ is odd.} \end{cases}$$

Now $|S_n - 1| \leq \frac{1}{n}$, so given $\epsilon > 0$ it suffices to choose $N = \left\lceil \frac{1}{\epsilon} \right\rceil$ to ensure that $|S_n - 1| < \epsilon$ whenever $n \geq N$. Therefore

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} S_n = 1.$$

Similarly,

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} I_n = -1.$$

5. (a) Let $P_n = \prod_{k=1}^n b_k$. The sequence P_n converges to $p \neq 0$ so there exists an $N_1 \in \mathbb{N}$ and $\alpha > 0$ such that $|P_n| \ge \alpha$ for all $n \ge N_1$ (for example $\alpha = |p/2|$ would work).

Convergence also implies the Cauchy condition - let $\epsilon > 0$ be arbitrary and fix $N_2 \in \mathbb{N}$ such that $|P_n - P_m| < \alpha \epsilon$ whenever $n, m \ge N_2$. Then if $n \ge N = \max\{N_1, N_2\}$ we have

$$\begin{aligned} \alpha |b_{n+1} - 1| &\leq |P_n| |b_{n+1} - 1| \\ &= \left| \prod_{k=1}^n b_k \right| |b_{n+1} - 1 \\ &= \left| \prod_{k=1}^{n+1} b_k - \prod_{k=1}^n b_k \right| \\ &= |P_{n+1} - P_n| \\ &\leq \alpha \epsilon. \end{aligned}$$

Therefore $|b_n - 1| < \epsilon$ for all $n \ge N + 1$, and we have

$$\lim_{n \to \infty} b_n = 1.$$

(b) Let $b_k = \frac{k^3 + k^2 + k}{k^3 + 1} = \frac{k(k^2 + k + 1)}{(k+1)(k^2 - k + 1)}$ and $P_n = \prod_{k=1}^n b_k$. Writing out the first few values of P_n makes it clear that the product is telescoping:

$$P_{1} = \frac{3}{2}$$

$$P_{2} = \frac{3}{2} \cdot \frac{2 \cdot 7}{3 \cdot 3} = \frac{7}{3}$$

$$P_{3} = \frac{3}{2} \cdot \frac{2 \cdot 7}{3 \cdot 3} \cdot \frac{3 \cdot 13}{4 \cdot 7} = \frac{13}{4}$$

This leads to the conjecture that

$$P_n = \frac{n^2 + n + 1}{n + 1}.$$
 (1)

We prove this by induction:

Clearly (1) holds when n = 1. If $P_k = \frac{k^2 + k + 1}{k+1}$ then

$$P_{k+1} = P_k \cdot b_{k+1}$$

$$= P_k \cdot \frac{(k+1)((k+1)^2 + (k+1) + 1)}{(k+2)((k+1)^2 - (k+1) + 1)}$$

$$= \frac{k^2 + k + 1}{k+1} \cdot \frac{(k+1)((k+1)^2 + (k+1) + 1)}{(k+2)(k^2 + k + 1)}$$

$$= \frac{(k+1)^2 + (k+1) + 1}{k+2},$$

so (1) holds for n = k + 1 as well.

Now note that $n^2 + n + 1 \ge n^2 + n = n(n+1)$, so for $n \ge 1$ we have

$$P_n = \frac{n^2 + n + 1}{n+1} \ge n,$$

and by comparison $\lim_{n\to\infty} P_n$ does not exist. Therefore $\prod_{k=1}^{\infty} b_k$ does not converge.

Note however that $\lim_{k\to\infty} b_k = 1$, so in part (a) we proved a necessary but not sufficient condition for the convergence of infinite products.