Math 2400

Assignment 2 - Solutions

1. The map that sends a triple (p, q, r) to the integer $2^{p} 3^{q} 5^{r}$ is an injection. This is a consequence of the fundamental theorem of arithmetic - every integer admits a unique factorisation into a product of powers of prime numbers so if $2^{p_{1}} 3^{q_{1}} 5^{r_{1}}=2^{p_{2}} 3^{q_{2}} 5^{r_{2}}$ then $\left(p_{1}, q_{1}, r_{1}\right)=\left(p_{2}, q_{2}, r_{2}\right)$.
2. Let

$$
f_{n}(x)=\lim _{k \rightarrow \infty}(\cos n!\pi x)^{2 k}
$$

If $x \in \mathbb{Q}$, say $x=p / q$ where $p, q \in \mathbb{Z}$ and $q \neq 0$, then for $n \geq q$,

$$
\begin{aligned}
n!x & =1 \cdot 2 \cdots(q-1) \cdot q \cdot(q+1) \cdots \cdots(n-1) \cdot n \cdot \frac{p}{q} \\
& =1 \cdot 2 \cdots(q-1) \cdot(q+1) \cdots \cdots(n-1) \cdot n \cdot p
\end{aligned}
$$

which is an integer. Therefore

$$
\cos n!\pi x= \begin{cases}1 & \text { if } n!x \text { is even } \\ -1 & \text { if } n!x \text { is odd }\end{cases}
$$

so we know that whenever $n \geq q, f_{n}(x)=1$. Consequently,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=1
$$

Otherwise if x is irrational, $n!x \notin \mathbb{Z}$ so $|\cos n!\pi x|<1$ and for any fixed n the geometric progression $(\cos n!\pi x)^{2 k} \rightarrow 0$ as $k \rightarrow \infty$. Therefore $f_{n}(x)=0$ for all n and

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

3. Let $\lim _{n \rightarrow \infty} a_{n}=a$ and fix $\epsilon>0$. Then there is an $N \in \mathbb{N}$ such that whenever $n \geq N$, we have $\left|a_{n}-a\right|<\epsilon$. Since $a_{n} \in[0,1]$ for all n we know that $\left|a_{n}-1 / 2\right| \leq 1 / 2$, which implies

$$
\begin{aligned}
|a-1 / 2| & =\left|a-a_{n}+a_{n}-1 / 2\right| \\
& \leq\left|a_{n}-a\right|+\left|a_{n}-1 / 2\right| \\
& <\epsilon+1 / 2 .
\end{aligned}
$$

Since ϵ was arbitrary, it must be the case that $|a-1 / 2| \leq 1 / 2$, or in other words $a \in[0,1]$.
4. (a) Since $\left(x_{n}\right)_{n=1}^{\infty}$ is bounded we may define

$$
\begin{aligned}
S_{n} & =\sup \left\{x_{i}: i \geq n\right\} \\
I_{n} & =\inf \left\{x_{i}: i \geq n\right\} .
\end{aligned}
$$

Furthermore

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} S_{n} \text { and } \quad \liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} I_{n}
$$

both exist, which implies that

$$
\limsup _{n \rightarrow \infty} x_{n}-\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left(S_{n}-I_{n}\right) .
$$

For all $m \geq n$ we have $I_{n} \leq x_{m} \leq S_{n}$, so $S_{n}-I_{n} \geq 0$ for all n and we conclude (using the same technique employed in question 3) that

$$
\lim _{n \rightarrow \infty}\left(S_{n}-I_{n}\right) \geq 0 \Rightarrow \limsup _{n \rightarrow \infty} x_{n} \geq \liminf _{n \rightarrow \infty} x_{n}
$$

(b) Set $x_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)$. Then since $1+\frac{1}{n}$ is monotone decreasing in n, using the definitions above we have:

$$
\begin{aligned}
& S_{n}= \begin{cases}1+\frac{1}{n} & \text { if } n \text { is even } \\
1+\frac{1}{n+1} & \text { if } n \text { is odd }\end{cases} \\
& I_{n}= \begin{cases}-1-\frac{1}{n+1} & \text { if } n \text { is even } \\
-1-\frac{1}{n} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Now $\left|S_{n}-1\right| \leq \frac{1}{n}$, so given $\epsilon>0$ it suffices to choose $N=\left\lceil\frac{1}{\epsilon}\right\rceil$ to ensure that $\left|S_{n}-1\right|<\epsilon$ whenever $n \geq N$. Therefore

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} S_{n}=1
$$

Similarly,

$$
\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} I_{n}=-1
$$

5. (a) Let $P_{n}=\prod_{k=1}^{n} b_{k}$. The sequence P_{n} converges to $p \neq 0$ so there exists an $N_{1} \in \mathbb{N}$ and $\alpha>0$ such that $\left|P_{n}\right| \geq \alpha$ for all $n \geq N_{1}$ (for example $\alpha=|p / 2|$ would work).
Convergence also implies the Cauchy condition - let $\epsilon>0$ be arbitrary and fix $N_{2} \in \mathbb{N}$ such that $\left|P_{n}-P_{m}\right|<\alpha \epsilon$ whenever $n, m \geq N_{2}$. Then if $n \geq N=\max \left\{N_{1}, N_{2}\right\}$ we have

$$
\begin{aligned}
\alpha\left|b_{n+1}-1\right| & \leq\left|P_{n}\right|\left|b_{n+1}-1\right| \\
& =\left|\prod_{k=1}^{n} b_{k}\right|\left|b_{n+1}-1\right| \\
& =\left|\prod_{k=1}^{n+1} b_{k}-\prod_{k=1}^{n} b_{k}\right| \\
& =\left|P_{n+1}-P_{n}\right| \\
& <\alpha \epsilon
\end{aligned}
$$

Therefore $\left|b_{n}-1\right|<\epsilon$ for all $n \geq N+1$, and we have

$$
\lim _{n \rightarrow \infty} b_{n}=1
$$

(b) Let $b_{k}=\frac{k^{3}+k^{2}+k}{k^{3}+1}=\frac{k\left(k^{2}+k+1\right)}{(k+1)\left(k^{2}-k+1\right)}$ and $P_{n}=\prod_{k=1}^{n} b_{k}$. Writing out the first few values of P_{n} makes it clear that the product is telescoping:

$$
\begin{aligned}
P_{1} & =\frac{3}{2} \\
P_{2} & =\frac{3}{2} \cdot \frac{2 \cdot 7}{3 \cdot 3}=\frac{7}{3} \\
P_{3} & =\frac{3}{2} \cdot \frac{2 \cdot 7}{3 \cdot 3} \cdot \frac{3 \cdot 13}{4 \cdot 7}=\frac{13}{4}
\end{aligned}
$$

This leads to the conjecture that

$$
\begin{equation*}
P_{n}=\frac{n^{2}+n+1}{n+1} \tag{1}
\end{equation*}
$$

We prove this by induction:

Clearly (1) holds when $n=1$. If $P_{k}=\frac{k^{2}+k+1}{k+1}$ then

$$
\begin{aligned}
P_{k+1} & =P_{k} \cdot b_{k+1} \\
& =P_{k} \cdot \frac{(k+1)\left((k+1)^{2}+(k+1)+1\right)}{(k+2)\left((k+1)^{2}-(k+1)+1\right)} \\
& =\frac{k^{2}+k+1}{k+1} \cdot \frac{(k+1)\left((k+1)^{2}+(k+1)+1\right)}{(k+2)\left(k^{2}+k+1\right)} \\
& =\frac{(k+1)^{2}+(k+1)+1}{k+2},
\end{aligned}
$$

so (1) holds for $n=k+1$ as well.
Now note that $n^{2}+n+1 \geq n^{2}+n=n(n+1)$, so for $n \geq 1$ we have

$$
P_{n}=\frac{n^{2}+n+1}{n+1} \geq n
$$

and by comparison $\lim _{n \rightarrow \infty} P_{n}$ does not exist. Therefore $\prod_{k=1}^{\infty} b_{k}$ does not converge.
Note however that $\lim _{k \rightarrow \infty} b_{k}=1$, so in part (a) we proved a necessary but not sufficient condition for the convergence of infinite products.

