
Math 2400
Assignment 2 - Solutions

1. The map that sends a triple (p, q, r) to the integer 2p3q5r is an injection. This is a consequence
of the fundamental theorem of arithmetic - every integer admits a unique factorisation into a
product of powers of prime numbers so if 2p13q15r1 = 2p23q25r2 then (p1, q1, r1) = (p2, q2, r2).

2. Let
fn(x) = lim

k→∞
(cosn!πx)2k.

If x ∈ Q, say x = p/q where p, q ∈ Z and q 6= 0, then for n ≥ q,

n!x = 1 · 2 · · · · · (q − 1) · q · (q + 1) · · · · · (n− 1) · n · p
q

= 1 · 2 · · · · · (q − 1) · (q + 1) · · · · · (n− 1) · n · p

which is an integer. Therefore

cosn!πx =

{
1 if n!x is even
−1 if n!x is odd,

so we know that whenever n ≥ q, fn(x) = 1. Consequently,

lim
n→∞

fn(x) = 1.

Otherwise if x is irrational, n!x 6∈ Z so | cosn!πx| < 1 and for any fixed n the geometric
progression (cosn!πx)2k → 0 as k →∞. Therefore fn(x) = 0 for all n and

lim
n→∞

fn(x) = 0.

3. Let limn→∞ an = a and fix ε > 0. Then there is an N ∈ N such that whenever n ≥ N , we
have |an − a| < ε. Since an ∈ [0, 1] for all n we know that |an − 1/2| ≤ 1/2, which implies

|a− 1/2| = |a− an + an − 1/2|
≤ |an − a|+ |an − 1/2|
< ε+ 1/2.

Since ε was arbitrary, it must be the case that |a− 1/2| ≤ 1/2, or in other words a ∈ [0, 1].

4. (a) Since (xn)∞n=1 is bounded we may define

Sn = sup{xi : i ≥ n}
In = inf{xi : i ≥ n}.

Furthermore
lim sup
n→∞

xn = lim
n→∞

Sn and lim inf
n→∞

xn = lim
n→∞

In

both exist, which implies that

lim sup
n→∞

xn − lim inf
n→∞

xn = lim
n→∞

(Sn − In).

For all m ≥ n we have In ≤ xm ≤ Sn, so Sn − In ≥ 0 for all n and we conclude (using the
same technique employed in question 3) that

lim
n→∞

(Sn − In) ≥ 0 ⇒ lim sup
n→∞

xn ≥ lim inf
n→∞

xn.
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(b) Set xn = (−1)n
(

1 +
1

n

)
. Then since 1 + 1

n is monotone decreasing in n, using the

definitions above we have:

Sn =

{
1 + 1

n if n is even
1 + 1

n+1 if n is odd

In =

{
−1− 1

n+1 if n is even

−1− 1
n if n is odd.

Now |Sn − 1| ≤ 1
n , so given ε > 0 it suffices to choose N =

⌈
1
ε

⌉
to ensure that |Sn − 1| < ε

whenever n ≥ N . Therefore
lim sup
n→∞

xn = lim
n→∞

Sn = 1.

Similarly,
lim inf
n→∞

xn = lim
n→∞

In = −1.

5. (a) Let Pn =
∏n
k=1 bk. The sequence Pn converges to p 6= 0 so there exists an N1 ∈ N and

α > 0 such that |Pn| ≥ α for all n ≥ N1 (for example α = |p/2| would work).

Convergence also implies the Cauchy condition - let ε > 0 be arbitrary and fix N2 ∈ N such
that |Pn − Pm| < αε whenever n,m ≥ N2. Then if n ≥ N = max{N1, N2} we have

α|bn+1 − 1| ≤ |Pn||bn+1 − 1|

=

∣∣∣∣∣
n∏
k=1

bk

∣∣∣∣∣ |bn+1 − 1|

=

∣∣∣∣∣
n+1∏
k=1

bk −
n∏
k=1

bk

∣∣∣∣∣
= |Pn+1 − Pn|
< αε.

Therefore |bn − 1| < ε for all n ≥ N + 1, and we have

lim
n→∞

bn = 1.

(b) Let bk = k3+k2+k
k3+1 = k(k2+k+1)

(k+1)(k2−k+1) and Pn =
∏n
k=1 bk. Writing out the first few values of

Pn makes it clear that the product is telescoping:

P1 =
3

2

P2 =
3

2
· 2 · 7

3 · 3
=

7

3

P3 =
3

2
· 2 · 7

3 · 3
· 3 · 13

4 · 7
=

13

4
.

This leads to the conjecture that

Pn =
n2 + n+ 1

n+ 1
. (1)

We prove this by induction:
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Clearly (1) holds when n = 1. If Pk = k2+k+1
k+1 then

Pk+1 = Pk · bk+1

= Pk ·
(k + 1)((k + 1)2 + (k + 1) + 1)

(k + 2)((k + 1)2 − (k + 1) + 1)

=
k2 + k + 1

k + 1
· (k + 1)((k + 1)2 + (k + 1) + 1)

(k + 2)(k2 + k + 1)

=
(k + 1)2 + (k + 1) + 1

k + 2
,

so (1) holds for n = k + 1 as well.

Now note that n2 + n+ 1 ≥ n2 + n = n(n+ 1), so for n ≥ 1 we have

Pn =
n2 + n+ 1

n+ 1
≥ n,

and by comparison limn→∞ Pn does not exist. Therefore
∏∞
k=1 bk does not converge.

Note however that limk→∞ bk = 1, so in part (a) we proved a necessary but not sufficient
condition for the convergence of infinite products.
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