Math 2400

Assignment 1 - Solutions

1. The set $\mathbb{F}=\{0,1, \alpha\}$ forms a field when equipped with the operations + and \cdot defined by:

+	0	1	α					
0	0	1	α					
1	1	α	0					
α	α	0	1	\quad	\cdot	0	1	α
:---:	:---:	:---:	:---:					
0	0	0	0					
1	0	1	α					
α	0	α	1					

Clearly 0 is an additive identity and each element has an additive inverse since 0 occurs in every row and column, symmetrically about the leading diagonal. In fact this symmetry applies to the entire Cayley table for + , so this operation is commutative and $(\mathbb{F},+)$ forms an abelian group. Similar considerations show that $(\mathbb{F} \backslash\{0\}, \cdot)$ is also an abelian group. Direct computations (you needed to do these for full marks) show that both operations are associative and that the distributive laws hold.
2. Let p be the number of elements in \mathbb{F} and define $\sigma_{l} \in \mathbb{F}$ by

$$
\sigma_{l}=\underbrace{1+1+\cdots+1}_{l \text { times }}
$$

The set $\left\{\sigma_{k}: 1 \leq k \leq p+1\right\}$ is a subset of \mathbb{F} that contains $p+1$ elements, so at least two of these are equal. That is, there must be natural numbers l and m satisfying $1 \leq l<m \leq p+1$ such that $\sigma_{l}=\sigma_{m}$, in which case

$$
\begin{aligned}
0 & =\sigma_{m}-\sigma_{l} \\
& =\underbrace{1+1+\cdots+1}_{m \text { times }}-\underbrace{1+1+\cdots+1}_{l \text { times }} \\
& =\underbrace{1+1+\cdots+1}_{m-l \text { times }}
\end{aligned}
$$

This is the result desired, with $n=m-l$.
3. Suppose that $x^{2}=6$ and $x=\frac{p}{q}$, where p and $q \neq 0$ are integers with no divisors in common. Then we have $6 q^{2}=p^{2}$, which implies that p^{2} is even. If p is odd then there is some integer k for which $p=2 k+1$. However this implies that

$$
p^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1
$$

which is also odd, so p must be even. We know then that $p=2 l$ for some integer l, so $3 q^{2}=2 l^{2}$ which is even. If q is odd, of the form $2 m+1$ say, then

$$
3 q^{2}=3\left(2\left(2 m^{2}+2 m\right)+1\right)=2\left(6 m^{2}+6 m+1\right)+1
$$

which is odd. Therefore p and q are both even, but we assumed that they had no common divisors, so this is a contradiction.
4. By the usual triangle inequality, for all $x, y \in \mathbb{R}$ we have

$$
|x|-|y|=|x-y+y|-|y| \leq|x-y|+|y|-|y|=|x-y|
$$

and

$$
|x|-|y|=|x|-|-x+x-y| \geq|x|-|x|-|x-y|=-|x-y|
$$

Therefore,

$$
-|x-y| \leq|x|-|y| \leq|x-y|
$$

which is equivalent to

$$
||x|-|y|| \leq|x-y| .
$$

5. For $n \geq 1$ it holds that $n(n-1) \geq 0 \Rightarrow n^{2} \geq n$, so

$$
\frac{1}{n^{2}+n} \leq \frac{1}{2 n}
$$

Now, given $\epsilon>0$, whenever

$$
\frac{1}{2 \epsilon}<n
$$

we have

$$
\frac{1}{2 n}<\epsilon
$$

Clearly then it suffices to choose $N=\left\lceil\frac{1}{2 \epsilon}\right\rceil$ to ensure that

$$
\left|\frac{1}{n^{2}+n}\right|<\epsilon
$$

for all $n \geq N$. Since ϵ was arbitrary we may conclude that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}+n}=0
$$

6. If $\left(a_{n}\right)_{n=1}^{\infty}$ converges it is a Cauchy sequence, so there exists $N \in \mathbb{N}$ such that

$$
\left|a_{n}-a_{m}\right|<\frac{1}{2}
$$

for all $n, m \geq N$. However if $b, c \in \mathbb{Z}$ are distinct then

$$
|b-c| \geq 1
$$

so it must be the case that $a_{m}=a_{n}$ for all $n, m \geq N$. That is, it is necessary that after finitely many terms the sequence becomes constant. This is also a sufficient condition for convergence - if there exists $N \in \mathbb{N}$ such that $a_{n}=a_{m}$ for all $n, m \geq N$ then $\left|a_{n}-a_{m}\right|=0$, which is less than every $\epsilon>0$, whenever $n, m \geq N$.

