
Math 2400
Assignment 1 - Solutions

1. The set F = {0, 1, α} forms a field when equipped with the operations + and · defined by:

+ 0 1 α
0 0 1 α
1 1 α 0
α α 0 1

· 0 1 α
0 0 0 0
1 0 1 α
α 0 α 1

Clearly 0 is an additive identity and each element has an additive inverse since 0 occurs in
every row and column, symmetrically about the leading diagonal. In fact this symmetry
applies to the entire Cayley table for +, so this operation is commutative and (F,+) forms
an abelian group. Similar considerations show that (F \ {0}, ·) is also an abelian group.
Direct computations (you needed to do these for full marks) show that both operations are
associative and that the distributive laws hold.

2. Let p be the number of elements in F and define σl ∈ F by

σl = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
l times

.

The set {σk : 1 ≤ k ≤ p+ 1} is a subset of F that contains p+ 1 elements, so at least two of
these are equal. That is, there must be natural numbers l and m satisfying 1 ≤ l < m ≤ p+1
such that σl = σm, in which case

0 = σm − σl
= 1 + 1 + · · ·+ 1︸ ︷︷ ︸

m times

− 1 + 1 + · · ·+ 1︸ ︷︷ ︸
l times

= 1 + 1 + · · ·+ 1.︸ ︷︷ ︸
m− l times

This is the result desired, with n = m− l.

3. Suppose that x2 = 6 and x = p
q , where p and q 6= 0 are integers with no divisors in common.

Then we have 6q2 = p2, which implies that p2 is even. If p is odd then there is some integer
k for which p = 2k + 1. However this implies that

p2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

which is also odd, so p must be even. We know then that p = 2l for some integer l, so
3q2 = 2l2 which is even. If q is odd, of the form 2m+ 1 say, then

3q2 = 3(2(2m2 + 2m) + 1) = 2(6m2 + 6m+ 1) + 1

which is odd. Therefore p and q are both even, but we assumed that they had no common
divisors, so this is a contradiction.

4. By the usual triangle inequality, for all x, y ∈ R we have

|x| − |y| = |x− y + y| − |y| ≤ |x− y|+ |y| − |y| = |x− y|

and
|x| − |y| = |x| − | − x+ x− y| ≥ |x| − |x| − |x− y| = −|x− y|.
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Therefore,
−|x− y| ≤ |x| − |y| ≤ |x− y|

which is equivalent to
||x| − |y|| ≤ |x− y|.

5. For n ≥ 1 it holds that n(n− 1) ≥ 0 ⇒ n2 ≥ n, so

1

n2 + n
≤ 1

2n
.

Now, given ε > 0, whenever
1

2ε
< n

we have
1

2n
< ε.

Clearly then it suffices to choose N =
⌈

1
2ε

⌉
to ensure that∣∣∣∣ 1

n2 + n

∣∣∣∣ < ε

for all n ≥ N . Since ε was arbitrary we may conclude that

lim
n→∞

1

n2 + n
= 0.

6. If (an)∞n=1 converges it is a Cauchy sequence, so there exists N ∈ N such that

|an − am| <
1

2

for all n,m ≥ N . However if b, c ∈ Z are distinct then

|b− c| ≥ 1

so it must be the case that am = an for all n,m ≥ N . That is, it is necessary that after
finitely many terms the sequence becomes constant. This is also a sufficient condition for
convergence - if there exists N ∈ N such that an = am for all n,m ≥ N then |an − am| = 0,
which is less than every ε > 0, whenever n,m ≥ N .
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