There exists a unique solution of the IVP

\[y'(t) = F(t, y(t)) \quad y(0) = k \]

provided the components \(f_1, f_2, \ldots, f_n \) of \(F \) are 'suitably smooth' functions.

(\textit{K, p.137 Theorem 1})

Things go wrong if \(F \) not 'suitably smooth'.
Exercise: \[
\begin{aligned}
y_1' &= \sqrt[4]{\frac{1}{2}(y_1+2)(y_2-1)} \\
y_2' &= 2\sqrt{1 + y_1 + 2}
\end{aligned}
\]

ICs: \(y_1(0) = -2 \), \(y_2(0) = 1 \)

There exist (at least) two solutions:

1) \(y_1(t) = -2 \), \(y_2(t) = 1 \), \(-\infty < t < \infty\)

2) \(y_1(t) = \begin{cases}
\frac{t^2}{2} - 2, & t \geq 0 \\
-\frac{t^2}{2} - 2, & t < 0
\end{cases} \)
\(y_2(t) = \begin{cases}
\frac{t^2}{2} + 1, & t \geq 0 \\
-\frac{t^2}{2} + 1, & t < 0
\end{cases} \)

Check!
\[\begin{align*}
\text{Ex: } & \begin{cases}
 y_1' = y_2 \\
 y_2' = \frac{6y_2}{t^2}
\end{cases} \quad \text{ICs: } y(0) = 6, \ y_2(0) = 6 \\
\end{align*} \]

No solution exists.

[General solution of system is]
\[y_1(t) = \alpha t^2 + \beta t^{-2}, \quad y_2(t) = 3\alpha t^2 - 2\beta t^{-3} \]

\[\begin{align*}
\text{Ex: } & \begin{cases}
 y_1' = y_2 \\
 y_2' = (y_1)^2 + e^t
\end{cases} \quad \text{ICs: } y(0) = 0, \ y_2(0) = 0
\end{align*} \]

Theorem shows that there exists a unique solution in this case. Unfortunately, it cannot be expressed in terms of known functions.
The simplest systems of ODEs are linear

For \(n=2 \):

\[
\begin{align*}
y_1'(t) &= a_{11}(t)y_1(t) + a_{12}(t)y_2(t) + g_1(t) \\
y_2'(t) &= a_{21}(t)y_1(t) + a_{22}(t)y_2(t) + g_2(t)
\end{align*}
\]

Two coupled, first-order, linear ODEs

Here \(a_{11}(t), a_{12}(t), a_{21}(t), a_{22}(t), g_1(t), g_2(t) \) are given functions.

Can write as

\[y'(t) = A(t)y(t) + g(t) \]

\[
A(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) \\ a_{21}(t) & a_{22}(t) \end{bmatrix}, \quad y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}, \quad g(t) = \begin{bmatrix} g_1(t) \\ g_2(t) \end{bmatrix}
\]

given (known) unknown given (known)
[For general \(n \), \(y(t) \) would be an \(n \)-vector, \(A(t) \) would be \(n \times n \), \(g(t) \) would be an \(n \)-vector, \(\text{const} \).]

For a linear system with \(I \), \(y(t_0) = y_0 \), there exists a unique solution if all the \(\text{adj}(t) \) and \(g(t) \) are continuous (at and near \(t_0 \)). (Kp. 138 Theorem 2).

We shall mainly deal with linear systems

\[
y'(t) = A(t)y(t) + g(t),
\]

mainly with \(n = 2 \), mainly in the homogeneous case \(g(t) = 0 \), and mainly in the case \(A = \text{const.} 2 \times 2 \) matrix!

[Then IVP always has a unique solution!]
(4.1) \[y'(t) = A\dot{y}(t), \quad A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \]

(a_{12}, a_{21} \text{ not necessarily equal to 0, i now!})

ICs: \[y(0) = y_0 = (y^{10}_0) \]

Recall for ODE \[y''(t) = F(t, y(t), y'(t)) \]
to visualize solution we draw graph of (or get computer to draw graph of) \(y(t) \) versus \(t \).

What to do to visualize solution of (4.1)?

Could draw graphs of \(y(t) v. t \) and \(y(t)v.t \).
A more interesting thing is to consider \((y_1(t), y_2(t))\) as \textit{coordinates} of a point \(P\) moving with time in the \(y_1,y_2\)-plane, starting at \((y_{10}, y_{20})\) at time \(t_0\):

![Diagram of a trajectory in the \(y_1,y_2\)-plane with arrows indicating the direction of increasing time \(t\).

Arrows on trajectory of \(P\) indicate direction of increasing time \(t\).

(See \(y(t)\) is \textit{position vector} of \(P\) at time \(t\).)
If we consider many different ICs, leading to many different trajectories, we build up a phase-portrait of the system of ODEs:

The y,y_2-plane is usually called the phase-plane.
Note: Two trajectories cannot cross (and a trajectory cannot cross itself) at a finite value of t.

pf:

Suppose

\[y_A(t_a) = y_P. \]

\[y_B(t_b) = y_P. \]

Let

\[y'(t) = y_A(t+t_a) - y_B(t+t_b) \]

Then

\[y'(t) = Ay(t) \quad \text{and} \quad y(0) = 0. \]

Check!

But one solution of these equations is:

By uniqueness theorem, \[y(t) = 0 \quad \text{if} \quad t = 0 \]

\[\Rightarrow y_A(t+t_a) = y(t+t_b) \]

\[\Rightarrow \text{trajectories look same near } P_0 \quad \text{do not cross.} \]
For a 2-component system

\[(4.1) \quad y'(t) = A \cdot y(t), \quad A = \text{const,} \quad 2 \times 2\]

there are 6 types of phase-portrait that can arise. We will now go through them one-by-one.

Note firstly: \(y(t) = 0 \) is always a solution, however \(A \) looks.

The **trivial solution**

The unique solution of (4.1) with ICs \(y(t_0) = 0 \), any \(t_0 \).

This trajectory is easy to plot!

\[
\begin{align*}
\text{traj.} \\
\end{align*}
\]
Type 1: Improper Node

(A has two real eigenvalues with same sign.)

Ex: \[A = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix} \]

(1) \[y'(t) = A y(t) \iff \begin{cases} y_1' = \frac{3}{4} y_1 + \frac{1}{4} y_2 \\ y_2' = \frac{1}{4} y_1 + \frac{3}{4} y_2 \end{cases} \]

Try \[y(t) = x e^{\lambda t}, \quad x = \begin{pmatrix} u \\ v \end{pmatrix} \text{ (const.)} \]

\[\Rightarrow y'(t) = \lambda x e^{\lambda t} \]

(2) \[A x = \lambda x \]

\[\Rightarrow (A - \lambda I)x = 0 \]

\[\Rightarrow Eigenvalue \text{ condition:} \]

0 = \det(A - \lambda I) = \begin{vmatrix} \frac{3}{4} - \lambda & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} - \lambda \end{vmatrix}

= (\frac{3}{4} - \lambda)^2 - \frac{1}{4} = \lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1)

Eigenvalues: \(\lambda_1 = 1, \quad \lambda_2 = 2\)
Summary:

1) Understand ideas of existence and uniqueness (K pp 137, 138, Theorems 1, 2) - no need to know details.

2) Understand idea of phase-plane and trajectories (→ phase-portrait)

3) Trajectories never cross.

4) \(y(t) = 0 \) is a solution of \(y'(t) = Ay(t) \)

Whatever \(A \) is, trajectory is the point at origin 0 in \(y_1, y_2 \)-plane.

K pp 137, 138, \(f(x,y,t) = 0, \alpha^1, \alpha^2 \)