The 3 PDEs

$$\frac{\partial u(x,t)}{\partial t} - c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = 0 \quad (26.1)$$

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0 \quad (26.2)$$

$$\frac{\partial^2 u(x,t)}{\partial t^2} - c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = 0 \quad (26.3)$$

are all linear and homogeneous \Rightarrow the superposition principle applies in each case:

If $u = u_1$ and $u = u_2$ satisfy (26.1), so does

$$u = \alpha u_1 + \beta u_2$$

α, β arbitrary constants.

Similarly for (26.2) and also for (26.3).
PDEs have a much richer set of solutions than ODEs:

Easy to check that, for example,

\[u_1 = e^{-\alpha^2 t} \sin(\alpha x), \quad u_2 = x^3 + 6c^2 x t \]

are each solutions of (26.1);

\[u_1 = \cos(\alpha x) \sinh(\alpha y), \quad u_2 = e^{-\alpha x} \sin(\alpha y), \quad u_3 = \alpha (x^3 - 3xy^2) \]

are each solutions of (26.2); and

\[u_1 = x^2 + c^2 t^2, \quad u_2 = e^{\alpha (x - ct)} \]

\[u_3 = \sinh(\alpha x) \cos(\alpha t) \]

are each solutions of (26.3). It is not so easy to find general solutions. But we can do it for the 1-D wave equation, (26.3).
\[
\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}
\]

We change the independent variables:

Let \(\nu = x + ct \quad \zeta = x - ct \)

\(\leftrightarrow \quad x = \frac{1}{2} (\nu + \zeta), \quad t = \frac{1}{2c} (\nu - \zeta) \)

Then

\[
\frac{\partial}{\partial x} = \frac{\partial \nu}{\partial x} \frac{\partial}{\partial \nu} + \frac{\partial \zeta}{\partial x} \frac{\partial}{\partial \zeta} = \frac{\partial}{\partial \nu} + \frac{\partial}{\partial \zeta}
\]

\[
\frac{\partial}{\partial t} = \frac{\partial \nu}{\partial t} \frac{\partial}{\partial \nu} + \frac{\partial \zeta}{\partial t} \frac{\partial}{\partial \zeta} = c \frac{\partial}{\partial \nu} - c \frac{\partial}{\partial \zeta}
\]

Then

\[
\frac{\partial^2 u^2}{\partial t^2} = (c \frac{\partial}{\partial \nu} - c \frac{\partial}{\partial \zeta})(c \frac{\partial}{\partial \nu} - c \frac{\partial}{\partial \zeta}) u
\]

\[
= c^2 \left(\frac{\partial^2 u}{\partial \nu^2} - 2 \frac{\partial^2 u}{\partial \zeta \partial \nu} + \frac{\partial^2 u}{\partial \zeta^2} \right)
\]

\[
\frac{\partial^2 u}{\partial x^2} = (\frac{\partial}{\partial \nu} + \frac{\partial}{\partial \zeta})(\frac{\partial}{\partial \nu} + \frac{\partial}{\partial \zeta}) u
\]

\[
= \left(\frac{\partial^2 u}{\partial \nu^2} + 2 \frac{\partial^2 u}{\partial \zeta \partial \nu} + \frac{\partial^2 u}{\partial \zeta^2} \right)
\]
So \[\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \]

\[\Rightarrow c^2 \left(\frac{\partial^2 u}{\partial t^2} - 2 \frac{\partial^2 u}{\partial t \partial x} + \frac{\partial^2 u}{\partial x^2} \right) - c^2 \left(\frac{\partial^2 u}{\partial t^2} + 2 \frac{\partial^2 u}{\partial t \partial x} + \frac{\partial^2 u}{\partial x^2} \right) = 0 \]

\[\Rightarrow -4c^2 \frac{\partial^2 u}{\partial t \partial x} = 0 \]

\[\frac{\partial^2 u}{\partial t \partial x} = 0 \quad (26.5) \]

(26.5) is equivalent to (26.3) — but can see how to solve (26.5)!

\[\frac{\partial}{\partial x} \left[\frac{\partial u}{\partial t} \right] = 0 \]

\[\Rightarrow \frac{\partial u}{\partial t} = A(t) \quad A \text{ arbitrary fn.} \]

\[u = \int A(v) \, dv + G(x) \quad G \text{ arbitrary fn.} \]

\[u = F(v) + G(x) \]

\[\Rightarrow u(x, t) = F(x + ct) + G(x - ct) \quad F, G \text{ arbitrary fns. (twice differentiable)} \]
General solution of 1-D wave equation:

\[u(x,t) = F(x+ct) + G(x-ct) \] (26.6)

F, G arbitrary functions of a single variable.

\textbf{Meaning:} F(x+ct) represents a wave of constant shape travelling to \underline{left} at speed c:

At \(t > 0 \):

\[u = F(x) \]

At \(t = 0 \):

\[u = F(x+ct) \]

Similarly, \(G(x-ct) \) represents a wave of constant shape travelling to \underline{right} at speed c.

We call c \underline{the wave speed}. \[\text{[Recall } c = \sqrt{\frac{T}{\rho}} \text{]} \]

To fix a particular solution of the wave equation, we have to give enough info. to fix the two functions F and G.
Initial Value Problem (IVP) for infinite string.

Suppose string is very long, and we are looking near middle—ends so far away we can ignore end effects (= boundary conditions). In effect, we consider
\[
\frac{\partial^2 u(x,t)}{\partial t^2} - c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = 0, \quad -\infty < x < \infty, \quad t > 0
\]

Aside on notation: Let's agree to write
\[
\frac{\partial u(x,t)}{\partial t} = u_t(x,t), \quad \frac{\partial u(x,t)}{\partial x} = u_x(x,t),
\]
\[
\frac{\partial^2 u(x,t)}{\partial t \partial x} = u_{tx}(x,t), \quad \frac{\partial^2 u(x,t)}{\partial x^2} = u_{xx}(x,t)
\]
and so on.

So our PDE is \[u_{tt}(x,t) - c^2 u_{xx}(x,t) = 0.\]

Now suppose we have ICs:
\[
\begin{align*}
 u(x,0) &= f(x) \quad \text{given fns.,} \quad -\infty < x < \infty, \\
 u_t(x,0) &= g(x) \quad \text{f: initial shape,} \quad g: \text{initial velocity profile}
\end{align*}
\]
We know solution of PDE + ICs must be of form
\[u(x,t) = F(x+ct) + G(x-ct) \] (26.7)
for some F and G. Can we determine F and G from given f and g?

Well, (26.7) \(\Rightarrow \) \[u_t(x,t) = \frac{\partial F(x+ct)}{\partial t} + \frac{\partial G(x-ct)}{\partial t} \]
\[= \frac{\partial (x+ct)}{\partial t} F'(x+ct) + \frac{\partial (x-ct)}{\partial t} G'(x-ct) \]
i.e.
\[u_t(x,t) = c F'(x+ct) - c G'(x-ct) \] (26.8)

Now, using ICs at \(t=0 \):
(26.7) \(\Rightarrow \) \[f(x) = u(x,0) = F(x) + G(x) \] (26.9)
(26.8) \(\Rightarrow \) \[g(x) = u_t(x,0) = c F'(x) - c G'(x) \] (26.10)

Integrating (26.10) w.r.t x we get:
\[c F(x) - c G(x) = \int g(x) dx \]
or better,
\[F(x) - G(x) = \frac{1}{c} \int_{x_0}^{x} g(s) ds + A \] (26.11)
Now can use (26.9) and (26.11) to fix F and G:

Adding: \[2F(x) = f(x) + \frac{1}{c} \int_{x_0}^{x} g(s) \, ds + A \]

Subtracting: \[2G(x) = f(x) - \frac{1}{c} \int_{x_0}^{x} g(s) \, ds - A \]

\[F(x+ct) + G(x-ct) = \frac{1}{2} f(x+ct) + \frac{1}{2c} \int_{x_0}^{x+ct} g(s) \, ds + \frac{1}{2} A \]
\[+ \frac{1}{2} f(x-ct) - \frac{1}{2c} \int_{x_0}^{x-ct} g(s) \, ds - \frac{1}{2} A \]

Now \[\int_{a}^{b} - \int_{a}^{c} = \int_{c}^{b}, \quad \infty \]

\[u(x,t) = F(x+ct) + G(x-ct) \]

\[u(x,t) = \frac{1}{2} f(x+ct) + \frac{1}{2} f(x-ct) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, ds \]

D'Alembert's solution for

IVP A 1-D wave equation on whole x-axis.
EX: I Cs \(u(x,0) = f(x) \), \(u_t(x,0) = 0 = g(x) \)

(string released from rest with initial shape given by \(f(x) \))

\[u(x,t) = \frac{1}{2} f(x+ct) + \frac{1}{2} f(x-ct) \]

Get pulses to left and right, each at speed \(c \), each with shape \(\frac{1}{2} f \):

Eg.

\[\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array} \]

\[\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array} \]

\[\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array} \]

\[\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array} \]

\[\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array} \]

'Plucked string'
EX: 2 ICs: \[u(x, 0) = 0 = f(x) \]
\[u_x(x, 0) = Ae^{-x^2} = g(x) \]

D'Alambert's solution:

\[u(x, t) = \frac{1}{2c} \int_{x-ct}^{x+ct} Ae^{-s^2} \, ds \]

- can't evaluate

\[= \frac{A \sqrt{\pi}}{4c} \left\{ \frac{2}{\sqrt{\pi}} \int_{0}^{x+ct} e^{-s^2} \, ds - \frac{2}{\sqrt{\pi}} \int_{0}^{x-ct} e^{-s^2} \, ds \right\} \]

Introduce new function:

\[\text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^2} \, ds \]
- the error function
Then our solution is

\[u(x,t) = \frac{A}{4\sqrt{\pi c}} \left(\text{erf}(x+ct) - \text{erf}(x-ct) \right) \]

How does it look? How does \(\text{erf} \) look?

Some properties of \(\text{erf}(z) \):

1) \(\text{erf}(-z) = -\text{erf}(z) \quad \text{odd function} \)

\[\text{Pf:} \quad \text{erf}(-z) = -\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-s^2} \, ds \]

\[(\text{Put } u = -s, \quad dv = -ds) \]

\[s = -z \leftrightarrow v = z \]
\[s = 0 \leftrightarrow v = 0 \]

\[= -\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-v^2} (-dv) \]

\[= -\text{erf}(z). \]

2) \(\frac{d}{dz} \text{erf}(z) (\equiv \text{erf}'(z)) = \frac{2}{\sqrt{\pi}} e^{-z^2} > 0 \)

\(\Rightarrow \text{erf}(z) \) is monotonically increasing
3) \(\text{erf}(\infty) = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-s^2} ds = \frac{1}{\sqrt{\pi}} \int_0^{\infty} e^{-s^2} ds = 1 \)

(Then \(\Rightarrow \text{erf}(-\infty) = -1 \))

4) \(\text{erf}(0) = 0 \)

5) \(\text{erf}(\frac{1}{2}) \approx 0.52 \), \(\text{erf}(1) \approx 0.84 \),
\(\text{erf}(2) \approx 0.995 \), \(\text{erf}(3) \approx 0.99998 \)

So, our solution to 1-D Wave Equation:
Summary:

1) PDEs have wide variety of solutions
2) Know (26.1, 2, 3). They are linear, homogeneous PDEs – superposition principle applies!
3) Know derivation of general solution of 1-D wave equation and D'Alembert's solution of IVP
4) Understand last two examples.

K § 11.9, 11.13, 11.2
K § 12.1, 12.2, 12.4