Principles of Complex Systems

2.1 Characterising Complex Systems

This first section will introduce many of the terms and
concepts that describe properties of complex systems.

Complex systems are made up of many interacting
parts without any central authority. Complex systems
can exhibit self-organisation and emergent behaviour.

When each part of the system acts locally and
autonomously, the system is called decentralised.

Self-organisation is the ability of certain systems to
create an ordered state in the absence of external
pressures.

“Self-organization is a process in which pattern at the
global level of a system emerges solely from numerous
interactions among the lower-level components of the
system. Moreover, the rules specifying interactions
among the system's components are executed using
only local information, without reference to the global
pattern.”

Camazine et al., 2001, pS.

Emergence can be described as coherent global
behaviour arising from local interactions among lower
level parts.

Kauffman’s terms ‘antichaos’ and ‘order for free’ both
describe emergence.
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e Emergent behaviour is robust since it is not
particularly sensitive to initial conditions or
perturbations. In systems that demonstrate emergence,
order arises from many different initial states.

e Real world examples of emergence in complex
systems:

— Gene regulation

— Organisms

— Behaviour of insect colonies and swarms
— Ecosystems

— The economy

— Cities

— Intelligence

— Evolution

Other definitions we need:

— A system is stochastic if it involves randomness. The
opposite is deterministic. The randomness typically
comes from our lack of knowledge of the underlying
interactions or imprecise measurements. By one
definition, randomness exists when repeated
occurrences of the same phenomenon can result in
different outcomes.

— Feedback is the process by which a system’s
behaviour is affected by the response it produces.
Negative feedback decreases the system response and
produces stable behaviour. Positive feedback amplifies
the system response (a.k.a. the snowball effect).
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2.2 Self-Organised Criticality

This section introduces self-organised criticality (SOC)
and the sand-pile model. We will look at the
mechanisms of SOC and the characteristic behaviour.
You should understand how a power law 1s represented
mathematically and graphically.

Self-organised criticality is a very general and far
reaching phenomenon that unifies the understanding of
many complex systems. It is the ability of a system to
evolve in such a way as to approach a state where the
system is barely stable and then maintain itself at that
state.

The archetypal example of SOC is a sand-pile
maintaining a constant (critical) slope despite the rate
of dropping sand or size of the initial pile.

Self-organised criticality 1s characterised by a ‘power
law’ distribution in some observable.

In the case of sand-piles, the distribution of the sizes of
sand slides or ‘avalanches’ follow the power law.

The mathematical form of a power law 1is:
N(s) ~ s 2

where N(s) is the number of events with size ‘s’, and
‘b’ 1s the exponent.

Taking the log of both sides gives:
log N(s) ~ —blogs,

which appears as a straight line with gradient ‘—b’ on
a log-log plot.

How does the coefficient A s ~°show up on the log-log
scale?
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The power law distribution is also called ‘scale free’
since it lacks a “characteristic length scale”. It does not
have a noticeable cut off like the exponential and
Poisson distribution or a specified scale like the
uniform distribution. The slope of the curve on any
section of the log-log plot is the same.
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The point of all this 1s that power law behaviour 1s very
common in nature:

Activity of the sun

Light from galaxies
Current flow in a resistor
Flow of water in a river
Earthquakes

Stock price fluctuations
Traffic flow in a city
Extinction of species
Signals in the brain
Even historical events

Large pulses are rare, small ones are common but all
sizes occur with a power law relationship in frequency.

A steady trickle of sand or energy or water or social
pressure drives the systems to organise themselves in
the same way: a mass of interlocking parts just barely
on the edge of criticality with breakdowns of all sizes
ripping through and rearranging things just often
enough to keep them on the edge.
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2.3 Langton’s Ant

e An example of a system with simple rules but
unanticipated emergent behaviour is Langton’s Ant:

The ant is located on a grid whose cells can be either
black or white. Initially the ant 1s started on a blank
grid. At each time step the ant will be facing in one of
four directions: N,S,E,W and follows a simple rule set
at each time step:

1. Take a step forward.

2. If you are on a white cell, then paint it black and turn

90 degrees to the right.
3. If you are on a black cell, then paint it white and turn
90 degrees to the left.
o
e
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Figure 16.2 Eight steps of Langton’s virtual ant, starting from an initially blank grid

e The behaviour of the system is deterministic and time
reversible.

e What happens next?

MATH1070, 2005. Complex Systems. 18




e The ant wanders around for about 10,000 time steps
forming a chaotic looking pattern with no apparent
structure. However, after about another 250 steps the
ant begins building a ‘highway’. It indefinitely
generates a pattern of precisely 104 steps moving it two
cells northwest, creating a diagonal band on the grid.

Figure 16.3 A virtual ant building a highway

e This highway epitomizes emergent behaviour: it is a
large scale, highly ordered, unplanned, self-organized
feature, unpredictable from knowledge of the rules, and
robust to initial conditions.

e Even when agents obey simple rules it 1s not always
possible to predict the future behaviour of such a
system!

o How is this different to chaos?
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