
MATH 1070 Lab session 3
8/8/05

 MATH 1070, Introduction to Computational Science

Lab Session 3 – calculations and problem Solving in MATLAB

Getting started

This lab runs on the PCs in the CLC, under the M/S Windows operating systems. If you are

not already familiar with: finding and opening files, launching applications, etc. in windows; then
you should take a few minutes to familiarize yourself with the computers in the lab – and feel free
to ask for help.

Next, you should launch MATLAB, from the START -> APPLICATIONS menu on the
lower LHS of the screen. Look for the MATLAB HELP menu, and browse around it, to get a feel
for how its structured. This will be a key resource for you. Also look for, and use, the document file
“SimpleMatLabCmds” on the MATH1070 web site. In Lab 1, you learned how to get started with
MATLAB, while Lab 2 introduced some simple calculations and logical tests. As necessary review
those exercise (for, if, etc).

Today’s lab

In this tutorial you will attempt some applied calculations in MATLAB, including free fall

motion and plot the results. You also will learn to put code modules into a special type of m-file,
called a function.

1. A simple calculation
In his book , Liber Abaci, published in 1202, Leonardo Fibonacci posed the following problem”

A man put a pair of rabbits in a place surrounded on all sides by a wall. How many
pairs of rabbits can be produced from that pair in a year it is supposed that every
month each pair begets a new pair, which from the second month on becomes
productive?

The solution to this problem is known as the Fibonacci series. The Fibonacci numbers xn are
defined as follows x0 = x1 = 1 and xn+1 = xn + xn-1 for n > 1. Find the first 100 Fibonacci numbers
and put them in a vector fib.

Exercise 2 Quadratic eqn.
a) Write a simple script file to solve a standard quadratic equation.
b) Now you will implement a Matlab function to do the same thing. You need to write two small
codes: one is the main program, to set up the calculation, do I/O etc., and the other is the function or
subroutine code. M-files can be either scripts or functions. So far you have used scripts which are
simply files containing a sequence of MATLAB statements. Functions make use of their own local
variables and accept input arguments: sin(x), cos(x), etc are examples that you already are familiar
with. The name of a function, as defined in the first line of the M-file, should be the same as the
name of the file, without the .m extension. For example, the existence of a file on your hard disk
called avg.m defines a new function called avg that calculates the mean of a data vector:

 function mean = avg(x,n)
 mean = sum(x)/n;

The variables within the body of the function are all local variables – they are known only in the
function code itself. You call this function (ie. the m-file) by a command that might look like:
 average = avg(DataVector, NumberOfPoints)

 1

MATH 1070 Lab session 3
8/8/05

You call this function from your “main” program just as you would call sin(x), etc. Functions
normally return when the end of the function is reached. Use a return statement to force an early
return – eg. after a logical test fails. The arguments (input) and output of a function can be either
scalars or vectors. You can call your new function anything you like, so long as its not a Matalb
“reserved name”, like sin, cos, for, while, zeros, etc. Its best to make it descriptive, so later you
don’t forget what it does: eg. QuadraticRoots. Since there are three parameters and two roots you
will need to use vectors. Use comments (%) to describe what it does – again, so that later you (or
another user) knows what it does.

c) Put logic tests in the function code to test for exceptions (errors, bugs), like a = 0, etc. (Anon. A
bug is an exception you didn’t think of yet).

Exercise 3 Free Fall motion - Kittinger
On 16 August 1960, US Air Force Captain Joseph Kittinger jumped from the gondola of an helium
balloon at an altitude of 31,354 m and took the longest skydive in history! Kittinger reports in his
article in National Geographic that: "No wind whistles or billows my clothing. I have absolutely no
sensation of the increasing speed with which I fall. [The clouds] rushed up so chillingly that I had
to remind myself they were vapor and not solid." At this altitude the density of air is low therefore
drag can be ignored but note that g = 9.72 m/s2. Kittinger set the world's record (which remains
unbroken) for the longest (1.95 miles) and fastest (4 minutes and 36 seconds) sky dive. He jumped
from 102,800 feet (31.3 km). He was in freefall for ~4 minutes and reached a maximum speed of
614 mph (982 km/h) before opening his parachute at 18,000 feet (5,500 m).

1) Write the set of equations for velocity and position by applying Newton's second law to the and
writing down the analytical solutions to the 1-D equations of motion (refer to Lecs 3 & 4, or any 1st
yr Physics text). We assume that Kittinger starts his fall from rest (v=0) and that his mass is 150
kg. Write a MATLAB code to calculate his speed v(t) and height y(t). Hint: start by loading an
array with the time values that you wish to use. Use the Matlab PLOT command (learn by reading
the HELP menu and trying an example) to plot these functions. Learn about the label, axis & title
options for PLOT and label your graphs. Ex 4 also has more information on plot.

2) Kittinger reports that he was in free fall from 31,354 m to 29,280 m and experienced no
noticeable change in acceleration for an additional 1,830 m, despite having deployed his
stabilization chute to avoid spinning. What would have been his speed and position then? Did
Kittinger become supersonic? (speed of sound at 30,000 m altitude is 300m/s).

In subsequent labs we will solve the DEs for this problem, using ODE45, and then include drag
forces, which slow the fall and make the model and calculations more realistic.

Exercise 4 CSI with MATLAB
(Courtesy A/Prof Ian Johnson, Physics, University of Sydney)
A body was found on the bottom of a disused quarry. The death is highly suspicious and the police
has hired you as an expert witness to determine whether this was a suicide or there was foul play.

The wall of the quarry nearest the point where the body was found rises about 33 m, in a series of
three distinct levels. The cliff face profile from the surveyor's drawing gives:
cliffProfile = [0 8 12 17.5 18 22 25 30 40;...
 33 29 21 19 15 14 2 0 0];
where the two rows represent horizontal and vertical coordinates of points along the cliff face (all
measurements are in metres). The two lower levels about halfway up the cliff. The body was found
at the very base of the cliff, at the point (30,0).
 NB: a Matlab statement can be continued to the next line with an ellipsis, or three dots: …

 2

MATH 1070 Lab session 3
8/8/05

You must determine the following:
1) Could the body have reached the point where it was found if the person had jumped from the top
of the cliff, or from either of the two lower levels?
2) Could the body have been thrown there from either the top of the cliff or the first ledge down?
From your physics classes you know that, if an object is thrown vertically upwards from the surface
of the earth with a (vertical) velocity vy, its vertical position y at any subsequent time t is given by:
 y = vy t - 1/2 g t2 (1)

Likewise, if the object is thrown horizontally with a (horizontal) velocity vx, its horizontal position x
at any subsequent time t is given by:
 x = vx t (2)

a) Write a short MATLAB script to draw the cliff face, ready for you to superimpose on it any
trajectory you calculate. Use the PLOT command to draw the cliff face:
 plot(cliffProfile(1,:), cliffprofile(2,:));

When you plot a trajectory, you do not want the axes of the graph to change from the values 0–40 m
along the x-axis and the same along the y-axis, so use the command:
 axis([0 40 0 40]);

b) Construct a vector representing the time from 0 to 10 seconds, in steps of 0.01 s. Then choose
the following values for the components of the initial velocities and the acceleration due to gravity:
 vx = 4 m/s , vy = 3 m/s, g = 9.8 m/s2

Then construct two vectors to represent x and y at each of these times. Plot y vs. x superimposed on
the drawing of the cliff. Your trajectory should lie close to the x-axis, starting at the origin. But at
least you should be able to answer the question: are the values above reasonable values to choose
for the initial velocities? You will need to use MATLAB’s HOLD ON and HOLD OFF
commands to superimpose graphs.

c) Repeat the calculation, this time adding constant initial displacements to the position vectors for
x and y, so that the trajectory starts from a point on the cliff profile.

d) When you have got everything working properly, incorporate all the above statements into a
MATLAB script which you can use over and over. You will want to re-run the script with many
different values of vx and vy.
You may want to devise some way of reading in new values while the script is still running. You
could use a couple of statements like,

 vx = input('Enter the value of vx : ')

e) Now you are in a position to answer the questions asked above. By entering different
(reasonable!) values of u and v, see if you can decide whether the body could have reached the point
where it was found if the person had jumped from the top of the cliff, or from either of the two
lower levels. Think of how fast you can walk or run.
How should you change your investigation to decide whether the body may have been thrown there
from either the top of the cliff or the first ledge down?
We will do more on this problem in coming weeks ……

Conclusions. Obviously there were a lot of simplifying assumptions that went into this simple
model of a falling body. Can you spell out what those assumptions were? How reasonable do you
think your conclusions were? Would you be prepared to stand up in a court of law to defend the
conclusions you drew above?

Acknowledgments: Dr. N Bordes, MATH2200; A/Prof I Johnson (Physics, USyd), CP2 & COSC1001.

 3

	Lab Session 3 – calculations and problem Solving in MATLAB
	Getting started
	Today’s lab

