Compartments

- A dynamic entity such as a level, concentration or number.
- Value in compartment is controlled by a differential equation:
 \[
 \frac{d\text{Compartment}}{dt} = f(t)
 \]
 Or usually...
 \[
 \frac{d\text{Compartment}}{dt} = \Sigma \text{inflows} - \Sigma \text{outflows}
 \]

Compartments:
Population Growth

- \(\frac{d\text{Population size}}{dt} = \text{Births} - \text{Deaths} \)
- births = birth_rate * Population_size
 - birth_rate is a constant based on the biology of individuals
- deaths = death_rate * Population_size
 - death_rate is a constant based on the biology of individuals

Initial size = 1
birth_rate = 0.3
death_rate = 0.1

Mass Action

- Law of mass action states that the rate of a reaction is proportional to an integral power of the concentrations of all the substances taking part in the reaction.
- E.g., for \(A + B \rightarrow C \) the differential equ for \(C \) is:
 \[
 \frac{dC}{dt} = k_1AB - k_{-1}C,
 \]
 where \(k_1 \) is the constant relating to the rate of production of \(C \) when \(A \) binds with \(B \); and \(k_{-1} \) is the constant relating to rate of release of \(A \) and \(B \) from \(C \).

E.g., for \(A + 2B \rightarrow C \) the differential equ for \(C \) is:
 \[
 \frac{dC}{dt} = k_1AB^2 - k_{-1}C,
 \]
 where \(B \) is raised to the power of 2 because there are 2 molecules of \(B \).
Enzyme activity or Protein transfer

- Concentration of Substrate (S).
- Concentration of Enzyme (X₀).
- Enzyme bound to substrate (X₁).
- Concentration of Product (P).

\[S + X₀ \xrightleftharpoons[k₁][k₁'] X₁ \xrightarrow[k₂][k₂'] P + X₀ \]

Enzyme Kinetics

In our previous problem of enzyme and substrate, let us assume two molecules of substrate are required by the enzyme. In this case, our reaction becomes the following with the corresponding differential equation below:

\[2S + X₀ \xrightarrow[k₁][k₁'] X₁ \xrightarrow[k₂][k₂'] 2P + X₀ \]

\[\frac{ds}{dt} = -k₁s²x₀ + k₁'x₁ \]

\[\frac{dx₁}{dt} = +k₁s²x₀ - k₁'x₁ - k₂x₁ \]

\[\frac{dp}{dt} = +k₂x₁ \]

Feedback & Homeostasis

- Positive feedback (less common than negative feedback) is where an increased value enhances further increases. (e.g. limitless population growth; early pioneer species growth).
- Negative feedback occurs where the rate of the process is limited for positive values of the control variable (or variable combination). This leads to homeostatic control.
 - Self-inhibition
 - Extrinsic
 - Saturation

Self-Inhibition

\[dN = \frac{b}{K}(1-N)N - \frac{dN}{d} \]

\[N = \text{Population size} \]

\[b = \text{birth rate} \]

\[d = \text{death rate} \]

Limitation = 1 - Population size, where K is the carrying capacity

Births = birth_rate * Population_size * Limitation
Self-Inhibition

- limited population growth

Extrinsic Inhibition

- An extrinsic or external factor may limit a process. E.g.,
 - a beaker of cold water warming to room temperature.
 - diffusion across a membrane
 - blood flow (between organs) driven by pressure differences

Example - Beaker of water warming to Room Temp.

- **FACTS:**
 - The water is initially below ambient temperature.
 - The rate of temperature change is initially large and decreases over time.
 - This is consistent with the rate of temperature rise being a function of the difference between the current temperature and the ambient temperature. Newton’s law of cooling describes this:

\[
\frac{dT}{dt} = k(T_a - T)
\]

- \(T_a \) = ambient temp
- \(k \) = constant dependent on characteristics of the liquid

Extrinsic Feedback

Saturation Feedback

- Negative feedback through the interaction between the quantity of donor available and the ability of the recipient to convert the donor substance.
- Commonly used in describing enzyme substrate kinetics/dynamics.
- Negative feedback puts bounds on the rates by saturating the recipient.
- Has elements of positive and negative feedback because the rate does not decrease to 0, nor increase infinitely.

Extrinsic Feedback

\[
\frac{dT}{dt} = k(T_a - T)
\]

- \(T_a \) = ambient temp
- \(k \) = constant dependent on characteristics of the liquid

Saturation Feedback

From example of enzymatic reactions or protein transfer across a membrane
Saturation Feedback

- E.g., Transfer of a protein across a membrane via a receptor:
- Basic equation Michaelis-Menten equation applies:

\[V = \frac{V_{max} \cdot S}{K_m + S} \]

- \(V \) = rate of product formation
- \(V_{max} \) = max reaction velocity
- \(S \) = substrate concentration
- \(K_m \) = half saturation constant; low \(K_m \) is a rapidly rising curve

Homeostatic Self-Inhibition

- The products of enzymatic reactions often inhibit the activity of the same enzyme or transcription (DNA to RNA).

\[\text{Feedback} = \frac{1}{1 + (\text{Product}/K)^n} \]

- where \(K \) is a limiting constant
- \(\text{Synthesis} = \text{synthesis_rate} \times \text{Product} \times \text{Feedback} \)
- \(\frac{dP}{dt} = \left[\text{s} \left(\frac{1}{1 + (P/K)^n} \right) \right] P - mP \)

- \(P = \text{Product_concentration} \)
- \(s = \text{synthesis_rate} \)
- \(m = \text{metabolism_rate} \)