1. (a) (i) The relation is antisymmetric. For all \(a, b \in \{0, 1, 2, 3\} \), if \((a, b) \in \rho \) and \(a \neq b \) then \((b, a) \notin \rho \).

(ii) The relation is not antisymmetric. \((2, 1) \in \rho \) and \((1, 2) \in \rho \) but \(1 \neq 2 \).

(b) There are three distinct equivalence classes: \([a]_\rho = \{a\} \), \([b]_\rho = \{b, d\} \), and \([c]_\rho = \{c\} \).

2. (a) The relation \(R_3 \) is reflexive: \(\forall x \in \mathbb{Z}, m \mid (x^n - x^m) \) since \(m \mid 0 \) for all \(m \in \mathbb{Z} \) with \(m \geq 1 \). The relation is symmetric: Suppose that \(a S b \) for \(a, b \in \mathbb{Z} \). Then \(m \mid (a^n - b^m) \), so \((a^n - b^m) = mk \) for some integer \(k \). But then \(b^n - a^n = -(a^n - b^m) = -(mk) = (-m)k \), and \(-m \in \mathbb{Z} \) since \(m \in \mathbb{Z} \). Thus \(m \mid (b^n - a^n) \) and \(b Sa \).

The relation is transitive: Suppose that \(a S b \) and \(b Sc \) for \(a, b, c \in \mathbb{Z} \). Then \(m \mid (a^n - b^m) \), so \((a^n - b^m) = mk \) for some integer \(k \), and \(m \mid (b^m - c^n) \), so \((b^m - c^n) = ml \) for some integer \(l \). But then \(a^n - c^n = (a^n - b^m) + (b^m - c^n) = mk + ml = m(k + l) \), and \(k + l \in \mathbb{Z} \) since \(k, l \in \mathbb{Z} \). Thus \(m \mid (a^n - c^n) \) and \(a Sc \). Thus the relation is reflexive, symmetric and transitive, so it is an equivalence relation.

(b) There are two distinct equivalence classes: \([0]_{S^*} = \{x \in \mathbb{Z} \mid x = 3k \) for some integer \(k \} \) and \([1]_{S^*} = [2]_{S^*} = \{x \in \mathbb{Z} \mid x = 3k + 1 \) or \(x = 3k + 2 \) for some integer \(k \} \).

3. (a) \(S \) is reflexive: \(\forall a \in \mathbb{Z}, a + 1 > a \).

\(S \) is antisymmetric: Suppose that \(a S b \) and \(b Sa \) for \(a, b \in \mathbb{Z} \). Therefore \(a + 1 > b \) and \(b + 1 > a \), and hence \(b + 1 > a > b - 1 \) from which it is clear that \(a = b \).

\(S \) is transitive: Suppose that \(a S b \) and \(b Sc \) for \(a, b, c \in \mathbb{Z} \). Therefore \(a + 1 > b \) and \(b + 1 > c \). So \(a + 1 > b \geq c \) and hence \(a Sc \).

Since \(S \) is reflexive, antisymmetric and transitive, \(S \) is a partial order relation.

(b) \(S \) is total. Either \(x \geq y \), in which case \(x + 1 > y \) and \(x Sy \), or \(x < y \), in which case \(y + 1 > x \) and \(y S x \).

4. (a) (i) \(R_1 \) is reflexive. Every prime factor of \(a \) is a prime factor of \(a \), for each \(a \in \mathbb{Z}^+ \).

(ii) \(R_1 \) is not symmetric. Every prime factor of \(6 \) is a prime factor of \(30 \), but not every prime factor of \(30 \) is a prime factor of \(6 \).

(iii) \(R_1 \) is not antisymmetric. Every prime factor of \(3 \) is also a prime factor of \(9 \), but every prime factor of \(9 \) is also a prime factor of \(3 \) (and \(3 \neq 9 \)).

(iv) \(R_1 \) is transitive. For all \(a, b, c \in \mathbb{Z}^+ \), if every prime factor of \(a \) is a prime factor of \(b \) and every prime factor of \(b \) is a prime factor of \(c \) then every prime factor of \(a \) is a prime factor of \(c \).

(v) \(R_1 \) is not symmetric, therefore it is not an equivalence relation.

(vi) \(R_1 \) is not antisymmetric, therefore it is not a partial order.

(b) (i) \(R_2 \) is reflexive. For all \(a \in \mathbb{Z}^+ \), \(\frac{a}{a} = 1 \in \mathbb{Z} \).

(ii) \(R_2 \) is not symmetric. \((6, 2) \in R_2 \) but \((2, 6) \notin R_2 \).

(iii) \(R_2 \) is antisymmetric. If \((a, b), (b, a) \in R_2 \) then \(a = bk \) for some \(k \in \mathbb{Z}^+ \) and \(b = al \) for some \(l \in \mathbb{Z}^+ \). So \(a = alk \) and hence \(1 = lk \) and \(l = k = 1 \). Hence \(a = b \).

(iv) \(R_2 \) is transitive. If \((a, b), (b, c) \in R_2 \) then \(a = bk \) for some \(k \in \mathbb{Z}^+ \) and \(b = cl \) for some \(l \in \mathbb{Z}^+ \). So \(a = clk \) and \(lk \in \mathbb{Z} \). Hence \((a, c) \in R_2 \).

(v) \(R_2 \) is not symmetric, therefore not an equivalence relation.

(vi) \(R_2 \) is reflexive, antisymmetric and transitive, therefore it is a partial order.

5. Here are the arrow diagrams for (a) and (b).

(a) Range of \(f = \{x, y, z, w\} \). The function is one-to-one and onto.
Range of \(f = \{x, y\} \). \(f \) is not one-to-one since \(f(a) = f(b) \). \(f \) is not onto since there is no \(p \in \{a, b, c, d\} \) such that \(f(p) = z \).

6. (a) \(f \) is not one-to-one. \(f(\{0\}) = f(\{1\}) \) but \(\{0\} \neq \{1\} \).
(b) \(f \) is not onto. There is no element \(x \in \mathcal{P}(A) \) such that \(f(x) = |X| = 6 \).
(c) Range of \(f = \{0, 1, 2, 3\} \).

(the end)