1. \(2x^2 + 2x - 24 = 0 \), so we use \(a = 2, b = 2, c = -24 \) in the quadratic formula. Hence

\[
\begin{align*}
 x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
 &= \frac{-2 \pm \sqrt{2^2 - 4 \cdot 2 \cdot (-24)}}{2 \cdot 2} \\
 &= \frac{-2 \pm \sqrt{4 - (-192)}}{4} \\
 &= \frac{-2 \pm \sqrt{196}}{4} \\
 &= \frac{-2 + 14}{4} \text{ or } \frac{-2 - 14}{4} \\
 &= \frac{12}{4} \text{ or } \frac{-16}{4} \\
 &= 3 \text{ or } -4
\end{align*}
\]

(2) \(3x^2 + 11x + 12 = 0 \), so we use \(a = 3, b = 11, c = 12 \) in the quadratic formula. Hence

\[
\begin{align*}
 x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
 &= \frac{-11 \pm \sqrt{11^2 - 4 \cdot 3 \cdot 12}}{2 \cdot 3} \\
 &= \frac{-11 \pm \sqrt{121 - 144}}{6} \\
 &= \frac{-11 \pm \sqrt{-23}}{6} \\
 \end{align*}
\]

Hence there is no solution.

(3) \(3x^2 - 6x + 3 = 0 \), so we use \(a = 3, b = -6, c = 3 \) in the quadratic formula. Hence

\[
\begin{align*}
 x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
 &= \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \\
 &= \frac{6 \pm \sqrt{36 - 36}}{6} \\
 &= \frac{6 \pm \sqrt{0}}{6} \\
 &= \frac{6}{6} \\
 &= 1
\end{align*}
\]

2. Let \(P \) be the amount invested, \(r \) be the interest rate per time period, \(n \) be the number of time periods and \(F \) be the final value. In each case, \(P = 400 \). Then:

i. Interest compounds annually, so we use the rate and number of time periods given in the question.

Hence \(r = 5.0\% = 0.05 \) and \(n = 5 \), so \(F = 400 \times (1 + 0.05)^5 = 400 \times 1.05^5 \approx 510.51 \).

The final balance is $510.51.

ii. Interest compounds twice a year, so we need to halve the rate and double the number of time periods given in the question.

Hence \(r = 2.5\% = 0.025 \) and \(n = 10 \), so \(F = 400 \times (1 + 0.025)^{10} = 400 \times 1.025^{10} \approx 512.03 \).

The final balance is $512.03.

iii. Interest compounds 4 times a year, so we need to divide the given rate by 4 and multiply the given number of years by 4.

Hence \(r = 1.3\% = 0.0125 \) and \(n = 20 \), so \(F = 400 \times (1 + 0.0125)^{20} = 400 \times 1.0125^{20} \approx 512.81 \).

The final balance is $512.81.

iv. Interest compounds 12 times a year, so we need to divide the given rate by 12 and multiply the given number of years by 12.

Hence \(r = 0.4\% = 0.0042 \) and \(n = 60 \), so \(F = 400 \times (1 + 0.0042)^{60} = 400 \times 1.0042^{60} \approx 513.34 \).

The final balance is $513.34.

v. Interest compounds continuously, so \(F = 400e^{0.05 \times 5} = 400e^{0.25} \approx 513.61 \).

The final balance is $513.61.
3. i. $\log_{10} 16^{18} = 18$

ii. $27 = 3^3$, so $\log_3 27 = 3$

iii. $\frac{1}{9} = 3^{-2}$, so $\log_3 \frac{1}{9} = \log_3 3^{-2} = -2$. Hence the answer is -2.

iv. $1000 = 10^3$, so $\log_{10} 1000 = 3$

v. $\frac{1}{10000} = 10^{-4}$, so $\log_{10} \frac{1}{10000} = -4$

vi. $\ln e^{12} = 12$

vii. $\frac{1}{e^{18}} = e^{-18}$, so $\ln \frac{1}{e^{18}} = \ln e^{-18} = -18$. Hence the answer is -18.

4. \[\begin{align*}
\text{Let } x &= \text{height ladder reaches on wall} \\
\text{y} &= \text{distance of ladder from base of wall} \\
\end{align*} \]

\[\begin{align*}
a) \quad \sin 60^\circ &= \frac{\text{opp}}{\text{hyp}} \quad &b) \quad \cos 60^\circ &= \frac{\text{adj}}{\text{hyp}} = \frac{y}{4} \\
\sin 60^\circ &= \frac{x}{4} \quad &\therefore \quad y &= 4 \times \cos 60^\circ = 2 \text{m} \\
\therefore \quad x &= 4 \times \sin 60^\circ = 3.5 \text{m} \\
\end{align*} \]

c) \[\begin{align*}
\sin 70^\circ &= \frac{\text{opp}}{\text{hyp}} \\
\sin 70^\circ &= \frac{x}{4} \\
\therefore \quad x &= 4 \times \sin 70^\circ = 3.76 \text{m} \\
\end{align*} \]

i. The ladder will not reach.
i. \(0 = -11x + 6\), so \(11x = 6\), so \(x = \frac{6}{11}\). Hence this is a vertical line, with \(x\) positive. Hence the matching graph is Graph B.

ii. \(2y + 8x^2 - 15 = -y + 13x^2 - 16\), so \(3y = 5x^2 - 1\). This equation includes an \(x^2\) term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the \(y\)-intercept is negative. Hence the matching graph is Graph Q.

iii. \(y = e^{5x}\), which is a graph of exponential growth. Hence the matching graph is Graph K.

iv. \(-10y - x + 2 = 16y + 14\), so \(26y = -x - 12\). Hence this is a straight line, with negative gradient and negative \(y\)-intercept. Hence the matching graph is Graph J.

v. \(-x + 3 = 8y - 11x + 16\), so \(8y = 10x - 13\). Hence this is a straight line, with positive gradient and negative \(y\)-intercept. Hence the matching graph is Graph E.

vi. \(-10y + 10 = 14y + 6x^2 + 10\), so \(24y = -6x^2\). This equation includes an \(x^2\) term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the \(y\)-intercept is 0. Hence the matching graph is Graph S.

vii. \(-12y - 9x^2 + 8 = -9y + 7x^2 - 1\), so \(3y = -16x^2 + 9\). This equation includes an \(x^2\) term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the \(y\)-intercept is positive. Hence the matching graph is Graph R.

viii. \(-12x - 5 = 2\), so \(-12x = 7\), so \(x = \frac{-7}{12}\). Hence this is a vertical line, with \(x\) negative. Hence the matching graph is Graph A.