1. \(\frac{2(x-3)}{7} + 5 = 9 \)
 \[2(x-3) = 4\]
 \[2(x-3) = 28\]
 \[x - 3 = 14\]
 \[x = 17\]

2. \(|2x + 6| = 2 \)
 \[-2x + 6 = 2 \quad \text{or} \quad -2x + 6 = -2\]
 \[-2x = -4 \quad \quad -2x = -8\]
 \[x = 2 \quad \quad x = 4\]

3. \(5x + 2 > 3x - 4 \)
 \[2x + 2 > -4\]
 \[2x > -6\]
 \[x > -3\]

4. a) \(\sqrt{40} \)
 \[= \sqrt{4 \times 10}\]
 \[= 2 \sqrt{10}\]
 b) \(2 \sqrt{3} \times 4\sqrt{6} \)
 \[= 8 \sqrt{18}\]
 \[= 8 \times 3\sqrt{2}\]
 \[= 24\sqrt{2}\]

5. a) \(x^3y^3 \times x^4y^2 + (x^6y^4) \)
 \[= x^{10}y^5 + (x^6y^4)\]
 b) \((p^2q^3)^2 \times p^4q^2 + (pq)^8 \times p^0\)
 \[= p^8q^6 \times p^4q^2 + (pq)^8 \times 1\]
 \[= p^{12}q^8 + p^{12}q^8 \times 1\]
 \[= 1 \times 1\]
 \[= 1\]

6. a) \((-2)^4 \)
 \[= -2 \times -2 \times -2 \times -2\]
 \[= 16\]
 b) \(-3^4 \)
 \[= -3 \times 3 \times 3 \times 3\]
 \[= 1\]
 c) \(2^{-4} \)
 \[= \frac{1}{2 \times 2 \times 2 \times 2}\]
 \[= \frac{1}{16}\]
d) \((-2)^{-3} \)
\[= \frac{1}{(-2)^3} \]
\[= \frac{1}{-8} \]
\[= -\frac{1}{8} \]

e) \((-2)^2 - 2 \)
\[= 4 - 2 \]
\[= 2 \]

f) \(-(-2^2) - 2 \)
\[= -(4) - 2 \]
\[= -6 \]

7. \(\sum_{n=1}^{3} (2x + 3) = 5 \)
LHS = \((-x + 3) + (0x + 3) + (x + 3) + (2x + 3) + (3x + 3) \)
\[= 5x + 15 \]
RHS = 5
So \(5x + 15 = 5 \)
\(5x = -10 \)
\(x = -2 \)

8. a) \(2h + 4h + 6h + 8h + 10h = \sum_{i=1}^{5} 2ih \)

b) \(\frac{-4}{5} + \frac{-4}{6} + \frac{-4}{7} + \frac{-4}{8} = \sum_{i=5}^{8} \frac{-4}{i} \)

9. Wally ran \(x \) laps. Wayne ran \(8 \) more, so \(x + 8 \).
So, \(x + x + 8 = 46 \)
\(2x = 38 \)
\(x = 19 \)
So Wally ran 19 laps and Wayne ran \(19 + 8 = 27 \) laps (check: \(19 + 27 = 46 \))

10. Let the first book have \(x \) pages. The second book therefore has \(40 + 4x \) pages.
So, \(x + 40 + 4x = 390 \)
\(5x = 350 \)
\(x = 70 \)
So the first book has 70 pages and the second book has \(40 + 4 \times 70 = 320 \). (check: \(70 + 320 = 390 \))

11. Let the middle number be \(n \). The number one less than \(n \) would be \(n - 1 \), and the number one more than \(n \) would be \(n + 1 \).

If we square \(n \) we get \(n^2 \). When we multiply \(n - 1 \) by \(n + 1 \), we get \((n - 1)(n + 1)\)
\[= n^2 + n - n - 1 \]
\[= n^2 - 1 \]

Hence the rule always works! Try it with three other consecutive numbers.