3. (a) \(4 + 3 - 2 = 5\) (or any correct answer)
(b) \((6 - 4) \times 6 = 12\) (or any correct answer)
(c) \(70 = (2 + 3 \times 4) \times 5\) (or any correct answer)

4. This is meant to be a rough estimate. The bus might be \(15\text{m} \times 3\text{m} \times 2.5\text{m}\). This gives a volume of \(112.5\text{m}^3\).
\(1\text{m}^3 = 1000\text{L},\) so \(112.5\text{ m}^3 = 112500\text{L}\). The bucket might hold 10L, so the number of buckets needed to fill the bus would be \(112500\text{L} \div 10\text{L} = 11250\) buckets. Any answer is fine as long as your dimensions are reasonable.

5. By adding entries in the top row, we see that the total of each row, column and diagonal is \(1 \frac{1}{4}\) (or \(\frac{5}{4}\) or \(\frac{15}{12}\)).

Hence the entry in the right-hand cell in the middle row must be \(\frac{15}{12} - \frac{2}{3} - \frac{1}{2} = \frac{15}{12} - \frac{8}{12} - \frac{6}{12} = \frac{1}{12}\).

Working diagonally, the middle cell must be \(\frac{5}{12}\). The left-hand cell in the middle row must be \(\frac{3}{4}\). The left-hand cell in the bottom row must be \(\frac{3}{4}\). The middle cell in the bottom row must then be \(\frac{7}{12}\). You can easily check that these are all correct.

\[
\begin{array}{ccc}
\frac{1}{3} & \frac{1}{4} & \frac{2}{3} \\
\frac{3}{4} & \frac{5}{12} & \frac{1}{12} \\
\frac{1}{6} & \frac{7}{12} & \frac{1}{2} \\
\end{array}
\]