1. Consider the diagram below which shows a function as a sort of machine.

 ![Function Machine Diagram](image)

 \[
 f(x) = 2x^2 - 3
 \]

 a) Explain what happens when a number is put into the function machine.

 b) Complete the following table of values

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 c) Draw a sketch of the function

2. Let \(f(x) = x + 3 \) and \(g(x) = x^2 \)

 Explain what is meant by \(f(g(x)) \) and \(g(f(x)) \). You may use examples to help you.

 By substituting various values for \(x \), show that \(f(g(x)) \) does not equal \(g(f(x)) \)