1. (a) (i) \(y + x - 2 = -3 \), so \(y = -3 - x + 2 \), so \(y = -x - 1 \). Hence this is a straight line, with negative gradient and negative \(y \)-intercept. Hence the matching graph is Graph J.

(ii) \(y = 3x^2 + 2 \). This equation includes an \(x^2 \) term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the \(y \)-intercept is positive. Hence the matching graph is Graph O.

(iii) \(y = -|4x| \), which is a graph of negative absolute value. Hence the matching graph is Graph M.

(iv) \(y = -2x^2 - 1 \). This equation includes an \(x^2 \) term with a negative coefficient, so the graph is a parabola which turns downwards. The \(y \)-intercept is negative. Hence the matching graph is Graph T.

(v) \(y = x^2 - 1 \). This equation includes an \(x^2 \) term with a positive coefficient, so the graph is a parabola which turns upwards. The \(y \)-intercept is negative. Hence the matching graph is Graph Q.

(vi) \(y = -2x^2 + 1 \). This equation includes an \(x^2 \) term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the \(y \)-intercept is positive. Hence the matching graph is Graph R.

(vii) \(3y + 2x + 1 = 3 \), so \(3y = 3 - 2x - 1 \), so \(3y = -2x + 2 \). Hence this is a straight line, with negative gradient and positive \(y \)-intercept. Hence the matching graph is Graph H.

(viii) \(-y + 1 = 3 \), so \(-y = 2 \), so \(y = -2 \). Hence this is a horizontal line, with \(y \) negative. Hence the matching graph is Graph D.

(b) Let \(P \) be the amount invested, \(r \) be the interest rate per time period, \(x \) be the number of time periods and \(F \) be the final value. In each case, \(P = 100 \). Then:

(i) Interest compounds annually so we use the rate and number of time periods given in the question. Hence \(r = 6\% = 0.06 \) and \(n = 7 \), so \(F = 100(1 + 0.06)^7 = 100(1.06)^7 = 150.36 \).

The final balance is \(150.36 \).

(ii) Interest compounds twice a year so we need to halve the rate and double the number of time periods given in the question. Hence \(r = 3\% = 0.03 \) and \(n = 14 \), so \(F = 100(1 + 0.03)^{14} = 100(1.03)^{14} = 151.26 \).

The final balance is \(151.26 \).

(iii) Interest compounds 12 times a year so we need to divide the given rate by 12 and multiply the given number of time periods by 12. Hence \(r = 0.5\% = 0.005 \) and \(n = 84 \), so \(F = 100(1 + 0.005)^{84} = 100(1.005)^{84} = 152.04 \).

The final balance is \(152.04 \).

(iv) Interest compounds continuously, so \(F = 100e^{0.06 \times 7} = 100e^{0.42} = 152.20 \).

The final balance is \(152.20 \).

(c) (i) \(100 = 10^2 \), so the answer is \(2 \).

(ii) \(1 = 10^{-6} \), so the answer is \(0 \).

(iii) The answer is \(3 \).

(iv) \(\frac{1}{e^5} = e^{-5} \), so the answer is \(-5 \).
2. (a) (i) \(y = -x^2 - 2 \). This equation includes an \(x^2 \) term with a negative coefficient, so the graph is a parabola which turns downwards. The \(y \)-intercept is negative. Hence the matching graph is Graph T.

(ii) \(x - 1 = 0 \), so \(x = 1 \). Hence this is a vertical line, with \(x \) positive. Hence the matching graph is Graph B.

(iii) \(y + 2x - 1 = -3 \), so \(y = -3 - 2x + 1 \), so \(y = -2x - 2 \). Hence this is a straight line, with negative gradient and negative \(y \)-intercept. Hence the matching graph is Graph J.

(iv) \(-2y + 2x - 3 = 3\), so \(-2y = 3 - 2x + 3\), so \(-2y = -2x + 6\), so \(2y = 2x - 6\). Hence this is a straight line, with positive gradient and negative \(y \)-intercept. Hence the matching graph is Graph E.

(v) \(2y - 3 = -2 \), so \(2y = 1 \). Hence this is a horizontal line, with \(y \) positive. Hence the matching graph is Graph C.

(vi) \(-y - 3x - 3 = -3\), so \(-y = -3 + 3x + 3\), so \(-y = 3x\), so \(y = -3x\). Hence this is a straight line, with negative gradient and passing through the origin. Hence the matching graph is Graph I.

(vii) \(y = x^2 + 1 \). This equation includes an \(x^2 \) term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the \(y \)-intercept is positive. Hence the matching graph is Graph O.

(viii) \(y = e^x \), which is a graph of exponential growth. Hence the matching graph is Graph K.

(b) Let \(P \) be the amount invested, \(r \) be the interest rate per time period, \(x \) be the number of time periods and \(F \) be the final value. In each case, \(P = 100 \). Then:

(i) Interest compounds annually so we use the rate and number of time periods given in the question. Hence \(r = 30\% = 0.30 \) and \(x = 6 \), so \(F = 100(1 + 0.30)^6 = 100(1.30)^6 = 482.68 \).

The final balance is \(\$482.68 \).

(ii) Interest compounds twice a year so we need to halve the rate and double the number of time periods given in the question. Hence \(r = 15\% = 0.15 \) and \(x = 12 \), so \(F = 100(1 + 0.15)^{12} = 100(1.15)^{12} = 535.02 \).

The final balance is \(\$535.02 \).

(iii) Interest compounds 12 times a year so we need to divide the given rate by 12 and multiply the given number of time periods by 12. Hence \(r = 2.5\% = 0.025 \) and \(x = 72 \), so \(F = 100(1 + 0.025)^{72} = 100(1.025)^{72} = 591.72 \).

The final balance is \(\$591.72 \).

(iv) Interest compounds continuously, so \(F = 100e^{0.30 \times 6} = 100e^{1.80} = 604.96 \).

The final balance is \(\$604.96 \).

(c) (i) \(1 = 10^0 \), so the answer is \(0 \).

(ii) \(\frac{1}{10} = 10^{-1} \), so the answer is \(-1 \).

(iii) The answer is \(6 \).

(iv) \(\frac{1}{e^3} = e^{-3} \), so the answer is \(-3 \).