1. (1) i. $3 y=8 y+13 x^{2}$, so $5 y=-13 x^{2}$. This equation includes an $x^{2}$ term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the $y$-intercept is 0 . Hence the matching graph is Graph S .
ii. $13 x+7=3 y$. Hence this is a straight line, with positive gradient and positive $y$-intercept. Hence the matching graph is Graph G.
iii. $-3 x+2=-10 x$, so $7 x=-2$, so $x=-\frac{2}{7}$. Hence this is a vertical line, with $x$ negative. Hence the matching graph is Graph A.
iv. $y=e^{-5 x}$, which is a graph of exponential decay. Hence the matching graph is Graph L.
v. $4=5 y+8 x+11$, so $5 y=-8 x-7$. Hence this is a straight line, with negative gradient and negative $y$-intercept. Hence the matching graph is Graph J.
vi. $-10 y+11=-11 y-3$, so $y=-14$. Hence this is a horizontal line, with $y$ negative. Hence the matching graph is Graph D.
vii. $7 x^{2}+4=y$. This equation includes an $x^{2}$ term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the $y$-intercept is positive. Hence the matching graph is Graph O.
viii. $y=e^{2 x}$, which is a graph of exponential growth. Hence the matching graph is Graph K.
(2) Let $P$ be the amount invested, $r$ be the interest rate per time period, $n$ be the number of time periods and $F$ be the final value. In each case, $P=200$. Then:
i. Interest compounds annually, so we use the rate and number of time periods given in the question. Hence $r=8.0 \%=0.08$ and $n=8$, so $F=200 \times(1+0.08)^{8}=200 \times 1.08^{8} \approx 370.19$.
The final balance is $\$ 370.19$.
ii. Interest compounds twice a year, so we need to halve the rate and double the number of time periods given in the question.
Hence $r=4.0 \%=0.04$ and $n=16$, so $F=200 \times(1+0.04)^{16}=200 \times 1.04^{16} \approx 374.60$.
The final balance is $\$ 374.60$.
iii. Interest compounds 4 times a year, so we need to divide the given rate by 4 and multiply the given number of years by 4 .
Hence $r=2.0 \%=0.02$ and $n=32$, so $F=200 \times(1+0.02)^{32}=200 \times 1.02^{32} \approx 376.91$.
The final balance is $\$ 376.91$.
iv. Interest compounds 12 times a year, so we need to divide the given rate by 12 and multiply the given number of years by 12 .
Hence $r=0.7 \%=0.0067$ and $n=96$, so $F=200 \times(1+0.0067)^{96}=200 \times 1.0067^{96} \approx 378.49$.
The final balance is $\$ 378.49$.
v. Interest compounds continuously, so $F=200 e^{0.08 \times 8}=200 e^{0.64} \approx 379.30$.

The final balance is $\$ 379.30$.
(3) Given an angle $a$ in radians, to convert $a$ to degrees you multiply by 180 and divide by $\pi$. Hence the converted angles are:

$$
99^{\circ} \quad 18^{\circ} \quad 0^{\circ} \quad 414^{\circ} \quad 200^{\circ} \quad 405^{\circ} 360^{\circ} \quad 3600^{\circ}
$$

(4) Given an angle $a$ in degrees, to convert $a$ to radians you divide by 180 and multiply by $\pi$. Hence the converted angles are:

$$
\pi \quad-\frac{\pi}{3} \quad-\frac{\pi}{4} \quad \frac{11 \pi}{10} \quad 3 \pi \quad-\frac{4 \pi}{5} \quad-\frac{6 \pi}{5} \quad-11 \pi
$$

i. $\log _{7} 7^{10}=10$
ii. $3=3^{1}$, so $\quad \log _{3} 3=1$
iii. $\frac{1}{8}=2^{-3}$, so $\log _{2} \frac{1}{8}=\log _{2} 2^{-3}=-3$. Hence the answer is -3 .
iv. $1000000=10^{6}$, so $\quad \log _{10} 1000000=6$
v. $\frac{1}{10000}=10^{-4}$, so $\quad \log _{10} \frac{1}{10000}=-4$
vi. $e=e^{1}$, so $\quad \ln e=1$
vii. $\frac{1}{e^{2}}=e^{-2}$, so $\ln \frac{1}{e^{2}}=\ln e^{-2}=-2$. Hence the answer is -2 .
viii. $4=64^{\frac{1}{3}}$, so $\quad \log _{64} 4=\frac{1}{3}$
(6) The graph of $y=\cos x$ is dashed; the graph of $y_{1}=2 \cos \frac{x}{2}$ is solid.

2. (1) i. $-11 y-7 x^{2}+12=-12 y+16 x^{2}+14$, so $y=23 x^{2}+2$. This equation includes an $x^{2}$ term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the $y$-intercept is positive. Hence the matching graph is Graph O.
ii. $-15 y=-3 y-16 x-3$, so $12 y=16 x+3$. Hence this is a straight line, with positive gradient and positive $y$-intercept. Hence the matching graph is Graph G.
iii. $12 y+13 x^{2}=14 y-16 x^{2}+11$, so $2 y=29 x^{2}-11$. This equation includes an $x^{2}$ term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the $y$-intercept is negative. Hence the matching graph is Graph Q.
iv. $12 x=-8$, so $x=-\frac{8}{12}$. Hence this is a vertical line, with $x$ negative. Hence the matching graph is Graph A.
v. $y=e^{7 x}$, which is a graph of exponential growth. Hence the matching graph is Graph K.
vi. $13 y-14=15 y-4 x$, so $2 y=4 x-14$. Hence this is a straight line, with positive gradient and negative $y$-intercept. Hence the matching graph is Graph E.
vii. $5=-11 y-12$, so $11 y=-17$, so $y=-\frac{17}{11}$. Hence this is a horizontal line, with $y$ negative. Hence the matching graph is Graph D.
viii. $y=-10 \times|-11 x|$, so $y=-10 \times|11 x|$, which is a graph of negative absolute value. Hence the matching graph is Graph M.
(2) Let $P$ be the amount invested, $r$ be the interest rate per time period, $n$ be the number of time periods and $F$ be the final value. In each case, $P=100$. Then:
i. Interest compounds annually, so we use the rate and number of time periods given in the question.

Hence $r=6.0 \%=0.06$ and $n=4$, so $F=100 \times(1+0.06)^{4}=100 \times 1.06^{4} \approx 126.25$.
The final balance is $\$ 126.25$.
ii. Interest compounds twice a year, so we need to halve the rate and double the number of time periods given in the question.
Hence $r=3.0 \%=0.03$ and $n=8$, so $F=100 \times(1+0.03)^{8}=100 \times 1.03^{8} \approx 126.68$.
The final balance is $\$ 126.68$.
iii. Interest compounds 4 times a year, so we need to divide the given rate by 4 and multiply the given number of years by 4 .
Hence $r=1.5 \%=0.015$ and $n=16$, so $F=100 \times(1+0.015)^{16}=100 \times 1.015^{16} \approx 126.90$.
The final balance is $\$ 126.90$.
iv. Interest compounds 12 times a year, so we need to divide the given rate by 12 and multiply the given number of years by 12 .
Hence $r=0.5 \%=0.005$ and $n=48$, so $F=100 \times(1+0.005)^{48}=100 \times 1.005^{48} \approx 127.05$.
The final balance is $\$ 127.05$.
v. Interest compounds continuously, so $F=100 e^{0.06 \times 4}=100 e^{0.24} \approx 127.12$.

The final balance is $\$ 127.12$.
(3) Given an angle $a$ in radians, to convert $a$ to degrees you multiply by 180 and divide by $\pi$. Hence the converted angles are:

$$
72^{\circ}-252^{\circ}-270^{\circ}-360^{\circ}-180^{\circ}-192^{\circ}-440^{\circ} 40^{\circ}
$$

(4) Given an angle $a$ in degrees, to convert $a$ to radians you divide by 180 and multiply by $\pi$. Hence the converted angles are:

$$
-\frac{6 \pi}{5} \quad \frac{5 \pi}{3} \quad-\frac{2 \pi}{3} \quad 3 \pi \quad \pi \quad \frac{6 \pi}{5} \quad \frac{7 \pi}{3} \quad-\frac{2 \pi}{9}
$$

(5) i. $\log _{15} 15^{18}=18$
ii. $64=4^{3}$, so $\quad \log _{4} 64=3$
iii. $\frac{1}{5}=5^{-1}$, so $\quad \log _{5} \frac{1}{5}=\log _{5} 5^{-1}=-1$. Hence the answer is -1 .
iv. $1000=10^{3}$, so $\quad \log _{10} 1000=3$
v. $\frac{1}{10}=10^{-1}$, so $\quad \log _{10} \frac{1}{10}=-1$
vi. $\ln e^{8}=8$
vii. $\frac{1}{e^{20}}=e^{-20}$, so $\ln \frac{1}{e^{20}}=\ln e^{-20}=-20$. Hence the answer is -20 .
viii. $4=64^{\frac{1}{3}}$, so $\quad \log _{64} 4=\frac{1}{3}$
(6) The graph of $y=\cos x$ is dashed; the graph of $y_{1}=2 \cos x$ is solid.

3. (1) i. $y=7 \times|9 x|$, which is a graph of absolute value. Hence the matching graph is Graph N.
ii. $-7 y-7=-6 y-x-7$, so $y=x$. Hence this is a straight line, with positive gradient and passing through the origin. Hence the matching graph is Graph F.
iii. $13 y-8 x^{2}=14 y-9 x^{2}$, so $y=x^{2}$. This equation includes an $x^{2}$ term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the $y$-intercept is 0 . Hence the matching graph is Graph P.
iv. $8 y-15=9 y+7 x^{2}-16$, so $y=-7 x^{2}+1$. This equation includes an $x^{2}$ term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the $y$-intercept is positive. Hence the matching graph is Graph R.
v. $2 x^{2}-5=15 y+9 x^{2}-5$, so $15 y=-7 x^{2}$. This equation includes an $x^{2}$ term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the $y$-intercept is 0 . Hence the matching graph is Graph S.
vi. $14 y-2 x^{2}-3=15 y+6 x^{2}$, so $y=-8 x^{2}-3$. This equation includes an $x^{2}$ term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the $y$-intercept is negative. Hence the matching graph is Graph T.
vii. $13 y=-14 x$. Hence this is a straight line, with negative gradient and passing through the origin. Hence the matching graph is Graph I.
viii. $y=e^{-6 x}$, which is a graph of exponential decay. Hence the matching graph is Graph L.
(2) Let $P$ be the amount invested, $r$ be the interest rate per time period, $n$ be the number of time periods and $F$ be the final value. In each case, $P=400$. Then:
i. Interest compounds annually, so we use the rate and number of time periods given in the question. Hence $r=9.0 \%=0.09$ and $n=5$, so $F=400 \times(1+0.09)^{5}=400 \times 1.09^{5} \approx 615.45$. The final balance is $\$ 615.45$.
ii. Interest compounds twice a year, so we need to halve the rate and double the number of time periods given in the question.
Hence $r=4.5 \%=0.045$ and $n=10$, so $F=400 \times(1+0.045)^{10}=400 \times 1.045^{10} \approx 621.19$.
The final balance is $\$ 621.19$.
iii. Interest compounds 4 times a year, so we need to divide the given rate by 4 and multiply the given number of years by 4 .

Hence $r=2.3 \%=0.0225$ and $n=20$, so $F=400 \times(1+0.0225)^{20}=400 \times 1.0225^{20} \approx 624.20$.
The final balance is $\$ 624.20$.
iv. Interest compounds 12 times a year, so we need to divide the given rate by 12 and multiply the given number of years by 12 .
Hence $r=0.8 \%=0.0075$ and $n=60$, so $F=400 \times(1+0.0075)^{60}=400 \times 1.0075^{60} \approx 626.27$.
The final balance is $\$ 626.27$.
v. Interest compounds continuously, so $F=400 e^{0.09 \times 5}=400 e^{0.45} \approx 627.32$.

The final balance is $\$ 627.32$.
(3) Given an angle $a$ in radians, to convert $a$ to degrees you multiply by 180 and divide by $\pi$. Hence the converted angles are:

$$
-720^{\circ} 2880^{\circ}-60^{\circ} 0^{\circ}-396^{\circ} 0^{\circ} 81^{\circ} 96^{\circ}
$$

(4) Given an angle $a$ in degrees, to convert $a$ to radians you divide by 180 and multiply by $\pi$. Hence the converted angles are:

$$
\begin{equation*}
\frac{11 \pi}{5} \quad \frac{3 \pi}{4} \quad \frac{8 \pi}{9} \quad-\frac{8 \pi}{9} \quad-\frac{4 \pi}{3} \quad-10 \pi \quad 4 \pi \quad \frac{2 \pi}{15} \tag{5}
\end{equation*}
$$

i. $\log _{2} 2^{18}=18$
ii. $4=2^{2}$, so $\quad \log _{2} 4=2$
iii. $\frac{1}{3}=3^{-1}$, so $\quad \log _{3} \frac{1}{3}=\log _{3} 3^{-1}=-1$. Hence the answer is -1 .
iv. $1000=10^{3}$, so $\quad \log _{10} 1000=3$
v. $\frac{1}{100000}=10^{-5}$, so $\quad \log _{10} \frac{1}{100000}=-5$
vi. $\ln e^{-6}=-6$
vii. $\frac{1}{e^{18}}=e^{-18}$, so $\ln \frac{1}{e^{18}}=\ln e^{-18}=-18$. Hence the answer is -18 .
viii. $3=9^{\frac{1}{2}}$, so $\quad \log _{9} 3=\frac{1}{2}$
(6) The graph of $y=\cos x$ is dashed; the graph of $y_{1}=2 \cos (2 x)$ is solid.

4. (1) i. $-14 y-x+12=-14 y+14$, so $-x=2$, so $x=-2$. Hence this is a vertical line, with $x$ negative. Hence the matching graph is Graph A.
ii. $-12 y+8 x+10=-14 y+9 x-12$, so $2 y=x-22$. Hence this is a straight line, with positive gradient and negative $y$-intercept. Hence the matching graph is Graph E.
iii. $-13 y=-14 y-12 x^{2}$, so $y=-12 x^{2}$. This equation includes an $x^{2}$ term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the $y$-intercept is 0 . Hence the matching graph is Graph S.
iv. $-3 y-2 x=-2 y-2 x-4$, so $-y=-4$, so $y=4$. Hence this is a horizontal line, with $y$ positive. Hence the matching graph is Graph C.
v. $-13 x=-14 x+5$, so $x=5$. Hence this is a vertical line, with $x$ positive. Hence the matching graph is Graph B.
vi. $13 y-1=-11 x^{2}-7$, so $13 y=-11 x^{2}-6$. This equation includes an $x^{2}$ term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the $y$-intercept is negative. Hence the matching graph is Graph T.
vii. $y=-5 \times|-8 x|$, so $y=-5 \times|8 x|$, which is a graph of negative absolute value. Hence the matching graph is Graph M.
viii. $6 y-4 x+15=10 y-9 x+8$, so $4 y=5 x+7$. Hence this is a straight line, with positive gradient and positive $y$-intercept. Hence the matching graph is Graph G.
(2) Let $P$ be the amount invested, $r$ be the interest rate per time period, $n$ be the number of time periods and $F$ be the final value. In each case, $P=400$. Then:
i. Interest compounds annually, so we use the rate and number of time periods given in the question.

Hence $r=9.0 \%=0.09$ and $n=4$, so $F=400 \times(1+0.09)^{4}=400 \times 1.09^{4} \approx 564.63$.
The final balance is $\$ 564.63$.
ii. Interest compounds twice a year, so we need to halve the rate and double the number of time periods given in the question.
Hence $r=4.5 \%=0.045$ and $n=8$, so $F=400 \times(1+0.045)^{8}=400 \times 1.045^{8} \approx 568.84$.
The final balance is $\$ 568.84$.
iii. Interest compounds 4 times a year, so we need to divide the given rate by 4 and multiply the given number of years by 4 .
Hence $r=2.3 \%=0.0225$ and $n=16$, so $F=400 \times(1+0.0225)^{16}=400 \times 1.0225^{16} \approx 571.05$.
The final balance is $\$ 571.05$.
iv. Interest compounds 12 times a year, so we need to divide the given rate by 12 and multiply the given number of years by 12 .
Hence $r=0.8 \%=0.0075$ and $n=48$, so $F=400 \times(1+0.0075)^{48}=400 \times 1.0075^{48} \approx 572.56$.
The final balance is $\$ 572.56$.
v. Interest compounds continuously, so $F=400 e^{0.09 \times 4}=400 e^{0.36} \approx 573.33$.

The final balance is $\$ 573.33$.
(3) Given an angle $a$ in radians, to convert $a$ to degrees you multiply by 180 and divide by $\pi$. Hence the converted angles are:

$$
0^{\circ} 252^{\circ}-2520^{\circ}-120^{\circ} 27^{\circ} 27^{\circ}-360^{\circ} \quad 216^{\circ}
$$

(4) Given an angle $a$ in degrees, to convert $a$ to radians you divide by 180 and multiply by $\pi$. Hence the converted angles are:

$$
\frac{13 \pi}{10} \quad 23 \pi \quad-\frac{3 \pi}{2} \quad-\frac{11 \pi}{9} \quad-\frac{13 \pi}{5} \quad \frac{16 \pi}{15} \quad-\frac{7 \pi}{15} \quad-\frac{11 \pi}{5}
$$

i. $\log _{9} 9^{15}=15$
ii. $125=5^{3}$, so $\quad \log _{5} 125=3$
iii. $\frac{1}{125}=5^{-3}$, so $\log _{5} \frac{1}{125}=\log _{5} 5^{-3}=-3$. Hence the answer is -3 .
iv. $1000=10^{3}$, so $\quad \log _{10} 1000=3$
v. $\frac{1}{100000}=10^{-5}$, so $\quad \log _{10} \frac{1}{100000}=-5$
vi. $e=e^{1}$, so $\ln e=1$
vii. $\frac{1}{e}=e^{-1}$, so $\ln \frac{1}{e}=\ln e^{-1}=-1$. Hence the answer is -1 .
viii. $3=27^{\frac{1}{3}}$, so $\quad \log _{27} 3=\frac{1}{3}$
(6) The graph of $y=\sin x$ is dashed; the graph of $y_{1}=2 \sin (2 x)$ is solid.

5. (1) i. $2 y+x+13=4 y-x+13$, so $2 y=2 x$. Hence this is a straight line, with positive gradient and passing through the origin. Hence the matching graph is Graph F.
ii. $2 y-5=-9 y+2 x^{2}-12$, so $11 y=2 x^{2}-7$. This equation includes an $x^{2}$ term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the $y$-intercept is negative. Hence the matching graph is Graph Q.
iii. $y=10 \times|8 x|$, which is a graph of absolute value. Hence the matching graph is Graph $N$.
iv. $-6 y-9 x=-11 y-10 x$, so $5 y=-x$. Hence this is a straight line, with negative gradient and passing through the origin. Hence the matching graph is Graph I.
v. $y=e^{5 x}$, which is a graph of exponential growth. Hence the matching graph is Graph K.
vi. $-10 y-x-10=-13 y-16$, so $3 y=x-6$. Hence this is a straight line, with positive gradient and negative $y$-intercept. Hence the matching graph is Graph E.
vii. $15 y+7 x^{2}=16 y+10 x^{2}$, so $y=-3 x^{2}$. This equation includes an $x^{2}$ term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the $y$-intercept is 0 . Hence the matching graph is

## Graph S.

viii. $y=e^{-6 x}$, which is a graph of exponential decay. Hence the matching graph is Graph L.
(2) Let $P$ be the amount invested, $r$ be the interest rate per time period, $n$ be the number of time periods and $F$ be the final value. In each case, $P=200$. Then:
i. Interest compounds annually, so we use the rate and number of time periods given in the question.

Hence $r=9.0 \%=0.09$ and $n=1$, so $F=200 \times(1+0.09)^{1}=200 \times 1.09^{1} \approx 218.00$.
The final balance is $\$ 218.00$.
ii. Interest compounds twice a year, so we need to halve the rate and double the number of time periods given in the question.
Hence $r=4.5 \%=0.045$ and $n=2$, so $F=200 \times(1+0.045)^{2}=200 \times 1.045^{2} \approx 218.40$.
The final balance is $\$ 218.40$.
iii. Interest compounds 4 times a year, so we need to divide the given rate by 4 and multiply the given number of years by 4 .
Hence $r=2.3 \%=0.0225$ and $n=4$, so $F=200 \times(1+0.0225)^{4}=200 \times 1.0225^{4} \approx 218.62$.
The final balance is $\$ 218.62$.
iv. Interest compounds 12 times a year, so we need to divide the given rate by 12 and multiply the given number of years by 12 .
Hence $r=0.8 \%=0.0075$ and $n=12$, so $F=200 \times(1+0.0075)^{12}=200 \times 1.0075^{12} \approx 218.76$.
The final balance is $\$ 218.76$.
v. Interest compounds continuously, so $F=200 e^{0.09 \times 1}=200 e^{0.09} \approx 218.83$.

The final balance is $\$ 218.83$.
(3) Given an angle $a$ in radians, to convert $a$ to degrees you multiply by 180 and divide by $\pi$. Hence the converted angles are:

$$
-180^{\circ}-81^{\circ}-450^{\circ} \quad 480^{\circ}-216^{\circ}-140^{\circ} 300^{\circ}-90^{\circ}
$$

(4) Given an angle $a$ in degrees, to convert $a$ to radians you divide by 180 and multiply by $\pi$. Hence the converted angles are:

$$
-\frac{\pi}{2} \quad-22 \pi \quad-\frac{\pi}{2} \quad-\frac{\pi}{10} \quad 6 \pi \quad-19 \pi \quad-\frac{\pi}{2} \quad-\frac{13 \pi}{9}
$$

(5) i. $\log _{11} 11^{19}=19$
ii. $64=4^{3}$, so $\quad \log _{4} 64=3$
iii. $\frac{1}{25}=5^{-2}$, so $\quad \log _{5} \frac{1}{25}=\log _{5} 5^{-2}=-2$. Hence the answer is -2 .
iv. $100=10^{2}$, so $\quad \log _{10} 100=2$
v. $\frac{1}{100000}=10^{-5}$, so $\log _{10} \frac{1}{100000}=-5$
vi. $\ln e^{3}=3$
vii. $\frac{1}{e^{12}}=e^{-12}$, so $\ln \frac{1}{e^{12}}=\ln e^{-12}=-12$. Hence the answer is -12 .
viii. $2=8^{\frac{1}{3}}$, so $\quad \log _{8} 2=\frac{1}{3}$
(6) The graph of $y=\sin x$ is dashed; the graph of $y_{1}=\frac{1}{2} \sin x$ is solid.


