1. (1) $f(y)=-2 y^{2}-9 y-1$, so $f(-4)=-2 \times(-4)^{2}-9 \times(-4)-1=-32+36-1=3$
(2) $y(-8 y+7)=0$, so

$$
\begin{aligned}
y=0 \quad \text { or } \quad-8 y+7 & =0 \\
-8 y & =-7 \\
y & =\frac{7}{8}
\end{aligned}
$$

(3) $-3 z^{2}-6 z-6=0$, so we use $a=-3, b=-6, c=-6$ in the quadratic formula. Hence

$$
\begin{aligned}
z & =\frac{6 \pm \sqrt{(-6)^{2}-4 \times(-3) \times(-6)}}{2 \times(-3)} \\
& =\frac{6 \pm \sqrt{36-72}}{-6} \\
& =\frac{6 \pm \sqrt{-36}}{-6}
\end{aligned}
$$

Hence there is no solution.
(4) To solve each of these, remember that if $a \times b=0$, then either $a=0$ or $b=0$; and also that $0^{n}=0$ for any natural number n. Then:
i. $-3 y(-4-6 y)=0$, so

$$
\begin{array}{rlrl}
-3 y=0 & \text { or } & -4-6 y & =0 \\
y=0 & -6 y & =4 \\
y & =\frac{4}{-6} \\
y & =-\frac{2}{3}
\end{array}
$$

ii. $(1-2 z)(9 z+10)=0$, so

$$
\begin{aligned}
1-2 z & =0 \\
-2 z & =-1 \\
z & =\frac{1}{2}
\end{aligned}
$$

or

$$
\begin{aligned}
9 z+10 & =0 \\
9 z & =-10 \\
z & =-\frac{10}{9}
\end{aligned}
$$

iii. $6(-3 z-7)(-3 z+1)=0$, so

$$
\begin{aligned}
-3 z-7 & =0 & \text { or } & -3 z+1
\end{aligned}=0
$$

iv. $(8-8 x)^{3}=0$, so $8-8 x=0$, so $-8 x=-8$, so $x=\frac{-8}{-8}$, so $x=1$
(5) $f(x)=-7+\left|x^{2}\right|$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- we can square any number.

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of x can be substituted into f.
(6) $f(w)=3+|\sqrt{w}|$

When evaluating the range, we need to keep in mind the following (starting with variable w):

- square root is always positive or 0 , so $\sqrt{w} \geq 0$;
- absolute value is always positive or 0 , so $|\sqrt{w}| \geq 0$;
- so $3+|\sqrt{w}| \geq 3$.

Hence, the range of this function is $[3, \infty)$.
(7) $f(z)=\frac{6}{|z|+10}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0 , so $|z|+10 \neq 0$;
- so $|z| \neq-10$;
- we can find the absolute value of any number. It will always be positive or 0 .

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of z can be substituted into f.
(8) $f(x)=\left|\frac{-2}{-x}\right|$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- denominator of a fraction cannot be 0 , so $-x \neq 0$.

Hence, the domain of this function is $(-\infty, 0) \cup(0, \infty)$, i.e. $x \neq 0$.
When evaluating the range, we need to keep in mind the following (starting with variable x):

- negative numerator usually reverse the inequality, and also this fraction can't be 0 , so $\frac{-2}{-x} \neq 0$;
- absolute value is always positive or 0 , so $\left|\frac{-2}{-x}\right|>0$.

Hence, the range of this function is $(0, \infty)$.
(9) ${ }^{* *}$
$f(x)=\frac{-10}{10+\sqrt{x}}$
When evaluating the range, we need to keep in mind the following (starting with variable x):

- square root is always positive or 0 , so $0 \leq \sqrt{x}$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0 ;
- so $10 \leq 10+\sqrt{x}$.

Hence, the range of this function is $[-1,0)$.
2. (1) $f(y)=-3 y^{2}-10 y-10$, so
$f(5)=-3 \times 5^{2}-10 \times 5-10=-75-50-10=-135$
(2) $(7 z-4)(-10 z+1)=0$, so

$$
\begin{aligned}
7 z-4 & =0 & \text { or } & -10 z+1
\end{aligned}=0
$$

(3) $-5 y^{2}-10 y+15=0$, so we use $a=-5, b=-10, c=15$ in the quadratic formula. Hence

$$
\begin{aligned}
y & =\frac{10 \pm \sqrt{(-10)^{2}-4 \times(-5) \times 15}}{2 \times(-5)} \\
& =\frac{10 \pm \sqrt{100-(-300)}}{-10} \\
& =\frac{10 \pm \sqrt{400}}{-10} \\
& =\frac{10+20}{-10} \text { or } \frac{10-20}{-10} \\
& =\frac{30}{-10} \text { or } \frac{-10}{-10} \\
& =-3 \text { or } 1
\end{aligned}
$$

(4) To solve each of these, remember that if $a \times b=0$, then either $a=0$ or $b=0$; and also that $0^{n}=0$ for any natural number n. Then:
i. $y(8+4 y)=0$, so

$$
\begin{aligned}
y=0 \quad \text { or } \quad 8+4 y & =0 \\
4 y & =-8 \\
y & =\frac{-8}{4} \\
y & =-2
\end{aligned}
$$

ii. $(-8+2 z)(1+9 z)=0$, so

$$
\begin{aligned}
& -8+2 z=0 \\
& 2 z=8 \\
& z=\frac{8}{2} \\
& \text { or } \quad 1+9 z=0 \\
& 9 z=-1 \\
& z=-\frac{1}{9} \\
& z=4
\end{aligned}
$$

iii. $5(4 z-8)(-5 z+7)=0$, so

$$
\begin{aligned}
& 4 z-8=0 \\
& 4 z=8 \\
& z=\frac{8}{4} \\
& \text { or } \quad-5 z+7=0 \\
& -5 z=-7 \\
& z=\frac{7}{5} \\
& z=2
\end{aligned}
$$

iv. $(-9+5 x)^{4}=0$, so $-9+5 x=0$, so $5 x=9$, so $x=\frac{9}{5}$
(5) $f(w)=\sqrt{\left(\frac{7}{w}\right)^{2}}$

When determining the domain of this function, we need to keep in mind the following:

- we can only take the square root of positive numbers or 0 , so $\left(\frac{7}{w}\right)^{2} \geq 0$;
- we can square any number;
- denominator of a fraction cannot be 0 , so $w \neq 0$.

Hence, the domain of this function is $(-\infty, 0) \cup(0, \infty)$, i.e. $w \neq 0$.
(6) $f(w)=\sqrt{6 \times \frac{7}{w}}$

When evaluating the range, we need to keep in mind the following (starting with variable w):

- fraction can be 0 only if numerator is 0 , so $\frac{7}{w} \neq 0$;
- square root is always positive or 0 , so $\sqrt{6 \times \frac{7}{w}}>0$.

Hence, the range of this function is $(0, \infty)$.
(7) $f(z)=\frac{12}{-9+\sqrt{z}}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0 , so $-9+\sqrt{z} \neq 0$;
- so $\sqrt{z} \neq 9$;
- we can only take the square root of positive number or 0 , so $z \neq 81$ and $0 \leq z$.

Hence, the domain of this function is $[0,81) \cup(81, \infty)$, i.e. $z \neq 81$ and $0 \leq z$.
(8) $f(w)=\sqrt{w^{2}}+5$

When determining the domain of this function, we need to keep in mind the following:

- we can only take the square root of positive numbers or 0 , so $w^{2} \geq 0$;
- we can square any number.

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of w can be substituted into f.
When evaluating the range, we need to keep in mind the following (starting with variable w):

- squaring always gives a positive or 0 , so $w^{2} \geq 0$;
- square root is always positive or 0 , so $\sqrt{w^{2}} \geq 0$;
- so $\sqrt{w^{2}}+5 \geq 5$.

Hence, the range of this function is $[5, \infty)$.
(9) **

$$
f(z)=\frac{1}{z^{2}+3}
$$

When evaluating the range, we need to keep in mind the following (starting with variable z):

- squaring always gives a positive or 0 , so $0 \leq z^{2}$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0 ;
- so $3 \leq z^{2}+3$.

Hence, the range of this function is $\left(0, \frac{1}{3}\right]$.
3. (1) $f(z)=-7 z-6$, so
$f(9)=-7 \times 9-6=-63-6=-69$
(2) $7 y(3 y-3)=0$, so

$$
\left.\begin{array}{rlr}
7 y & =0 & \text { or } \\
y & =0 & 3 y-3
\end{array}\right)=0
$$

(3) $5 z^{2}-15 z-50=0$, so we use $a=5, b=-15, c=-50$ in the quadratic formula. Hence

$$
\begin{aligned}
z & =\frac{15 \pm \sqrt{(-15)^{2}-4 \times 5 \times(-50)}}{2 \times 5} \\
& =\frac{15 \pm \sqrt{225-(-1000)}}{10} \\
& =\frac{15 \pm \sqrt{1225}}{10} \\
& =\frac{15+35}{10} \text { or } \frac{15-35}{10} \\
& =\frac{50}{10} \text { or } \frac{-20}{10} \\
& =5 \text { or }-2
\end{aligned}
$$

(4) To solve each of these, remember that if $a \times b=0$, then either $a=0$ or $b=0$; and also that $0^{n}=0$ for any natural number n. Then:
i. $10 z(8+3 z)=0$, so

$$
\begin{aligned}
& 10 z=0 \\
& z=0 \\
& 8+3 z=0 \\
& 3 z=-8 \\
& z=-\frac{8}{3}
\end{aligned}
$$

ii. $(-10-10 x)(2 x-5)=0$, so

$$
\begin{aligned}
& -10-10 x=0 \\
& \text { or } \quad 2 x-5=0 \\
& -10 x=10 \\
& x=\frac{10}{-10} \\
& 2 x=5 \\
& x=\frac{5}{2} \\
& x=-1
\end{aligned}
$$

iii. $4(-6-6 y)(-6+9 y)=0$, so

$$
\begin{array}{rlrl}
-6-6 y & =0 & \text { or } & -6+9 y \\
-6 y & =6 & 9 y & =6 \\
y & =\frac{6}{-6} & y & =\frac{6}{9} \\
y & =-1 & y & =\frac{2}{3}
\end{array}
$$

iv. $(3+7 x)^{9}=0$, so $3+7 x=0$, so $7 x=-3$, so $x=-\frac{3}{7}$
(5) $f(z)=\frac{-9}{\sqrt{-4+z}}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0 , so $\sqrt{-4+z} \neq 0$;
- we can only take the square root of positive numbers or 0 , so $-4+z>0$;
- so $z>4$.

Hence, the domain of this function is $(4, \infty)$, i.e. $z>4$.
(6) $f(x)=\sqrt{2|x|}$

When evaluating the range, we need to keep in mind the following (starting with variable x):

- absolute value is always positive or 0 , so $|x| \geq 0$;
- square root is always positive or 0 , so $\sqrt{2|x|} \geq 0$.

Hence, the range of this function is $[0, \infty)$.
(7) $f(z)=\frac{6}{1-12 z}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0 , so $1-12 z \neq 0$;
- so $-12 z \neq-1$;
- so $z \neq \frac{1}{12}$.

Hence, the domain of this function is $\left(-\infty, \frac{1}{12}\right) \cup\left(\frac{1}{12}, \infty\right)$, i.e. $z \neq \frac{1}{12}$.
(8) $f(x)=\left|x^{2}\right|$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- we can square any number.

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of x can be substituted into f.
When evaluating the range, we need to keep in mind the following (starting with variable x):

- squaring always gives a positive or 0 , so $x^{2} \geq 0$;
- absolute value is always positive or 0 , so $\left|x^{2}\right| \geq 0$.

Hence, the range of this function is $[0, \infty)$.
$(9)^{* *}$
$f(x)=\frac{11}{-5+|x|}$
When evaluating the range, we need to keep in mind the following (starting with variable x):

- absolute value is always positive or 0 , so $0 \leq|x|$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0 ;
- so $-5 \leq-5+|x|$ and $-5+|x| \neq 0$.

Hence, the range of this function is $\left(-\infty,-\frac{11}{5}\right) \cup(0, \infty)$.
4. (1) $f(x)=-3 x^{2}-8 x$, so $f(0)=-3 \times 0^{2}-8 \times 0=0+0=0$
(2) $-9 y(-10+6 y)=0$, so

$$
\begin{array}{rlrl}
-9 y & =0 & \text { or } & -10+6 y \\
y=0 & & 0 \\
6 y & =10 \\
y & =\frac{10}{6} \\
y & =\frac{5}{3}
\end{array}
$$

(3) $-4 x^{2}-36 x-80=0$, so we use $a=-4, b=-36, c=-80$ in the quadratic formula. Hence

$$
\begin{aligned}
x & =\frac{36 \pm \sqrt{(-36)^{2}-4 \times(-4) \times(-80)}}{2 \times(-4)} \\
& =\frac{36 \pm \sqrt{1296-1280}}{-8} \\
& =\frac{36 \pm \sqrt{16}}{-8} \\
& =\frac{36+4}{-8} \text { or } \frac{36-4}{-8} \\
& =\frac{40}{-8} \text { or } \frac{32}{-8} \\
& =-5 \text { or }-4
\end{aligned}
$$

(4) To solve each of these, remember that if $a \times b=0$, then either $a=0$ or $b=0$; and also that $0^{n}=0$ for any natural number n. Then:
i. $9 x(-3 x-4)=0$, so

$$
\left.\begin{array}{rlrl}
9 x & =0 & \text { or } & -3 x-4
\end{array}=0 \text {-3x } \begin{array}{rl}
& =4 \\
x=0 & x
\end{array}\right)=-\frac{4}{3}
$$

ii. $(-3 x+7)(-4+8 x)=0$, so

$$
\begin{aligned}
-3 x+7 & =0 & \text { or } & -4+8 x
\end{aligned}=0 \text { - } \begin{aligned}
& =4 \\
-3 x & =-7 \\
x & =\frac{7}{3}
\end{aligned}
$$

iii. $6(-10 x-1)(-8 x-8)=0$, so

$$
\begin{aligned}
& -10 x-1=0 \\
& -10 x=1 \\
& x=-\frac{1}{10} \\
& \text { or } \quad-8 x-8=0 \\
& -8 x=8 \\
& x=\frac{8}{-8} \\
& x=-1
\end{aligned}
$$

iv. $(10 z-1)^{1}=0$, so $10 z-1=0$, so $10 z=1$, so $z=\frac{1}{10}$
(5) $f(w)=-3 \sqrt{w-4}$

When determining the domain of this function, we need to keep in mind the following:

- we can only take the square root of positive numbers or 0 , so $w-4 \geq 0$;
- so $w \geq 4$.

Hence, the domain of this function is $[4, \infty)$, i.e. $w \geq 4$.
(6) $f(w)=2+\sqrt{w^{2}}$

When evaluating the range, we need to keep in mind the following (starting with variable w):

- squaring always gives a positive or 0 , so $w^{2} \geq 0$;
- square root is always positive or 0 , so $\sqrt{w^{2}} \geq 0$;
- so $2+\sqrt{w^{2}} \geq 2$.

Hence, the range of this function is $[2, \infty)$.
(7) $f(z)=\frac{-12}{z^{2}+4}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0 , so $z^{2}+4 \neq 0$;
- so $z^{2} \neq-4$;
- we can square any number and result will always be a positive number or 0 .

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of z can be substituted into f.
(8) $f(z)=-9+\frac{10}{z^{2}}$

When determining the domain of this function, we need to keep in mind the following:

- there are no square roots or absolute value signs;
- denominator of a fraction cannot be 0 , so $z^{2} \neq 0$;
- we can square any number.

Hence, the domain of this function is $(-\infty, 0) \cup(0, \infty)$, i.e. $z \neq 0$.
When evaluating the range, we need to keep in mind the following (starting with variable z):

- there are no square roots or absolute value signs;
- squaring always gives a positive or 0 , so $z^{2} \geq 0$;
- fraction can be 0 only if numerator is 0 , so $\frac{10}{z^{2}}>0$;
- so $-9+\frac{10}{z^{2}}>-9$.

Hence, the range of this function is $(-9, \infty)$.
$(9)^{* *}$
$f(x)=\frac{-3}{11 x+5}$
When evaluating the range, we need to keep in mind the following (starting with variable x):

- there are no squares, square roots or absolute value signs ;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0 .

Hence, the range of this function is $(-\infty, 0) \cup(0, \infty)$.
5. (1) $f(y)=6 y^{2}+7 y+8$, so
$f(4)=6 \times 4^{2}+7 \times 4+8=96+28+8=132$
(2) $9(-3-5 x)(5 x+8)=0$, so

$$
\begin{aligned}
-3-5 x & =0 & \text { or } & 5 x+8
\end{aligned}=0 \text { (} \begin{array}{rlrl}
-5 x & =3 & 5 x & =-8 \\
x & =-\frac{3}{5} & x & =-\frac{8}{5}
\end{array}
$$

(3) $y^{2}-10 y+25=0$, so we use $a=1, b=-10, c=25$ in the quadratic formula. Hence

$$
\begin{aligned}
y & =\frac{10 \pm \sqrt{(-10)^{2}-4 \times 1 \times 25}}{2 \times 1} \\
& =\frac{10 \pm \sqrt{100-100}}{2} \\
& =\frac{10 \pm \sqrt{0}}{2} \\
& =\frac{10}{2} \\
& =5
\end{aligned}
$$

(4) To solve each of these, remember that if $a \times b=0$, then either $a=0$ or $b=0$; and also that $0^{n}=0$ for any natural number n. Then:
i. $5 z(9+3 z)=0$, so

$$
\begin{array}{rlrl}
5 z=0 & \text { or } \quad 9+3 z & =0 \\
z=0 & 3 z & =-9 \\
z & =\frac{-9}{3} \\
z & =-3
\end{array}
$$

ii. $(-6+2 y)(-2+4 y)=0$, so

$$
\begin{aligned}
-6+2 y & =0 & \text { or } & -2+4 y
\end{aligned}=0
$$

iii. $5(-10-9 x)(x-8)=0$, so

$$
\begin{aligned}
-10-9 x & =0 & \text { or } & x-8
\end{aligned}=0
$$

iv. $(4 z+1)^{6}=0$, so $4 z+1=0$, so $4 z=-1$, so $z=-\frac{1}{4}$
(5) $f(z)=\left|\frac{-1}{\sqrt{z}}\right|$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- denominator of a fraction cannot be 0 , so $\sqrt{z} \neq 0$;
- we can only take the square root of positive numbers or 0 , so $z>0$.

Hence, the domain of this function is $(0, \infty)$, i.e. $z>0$.
(6) $f(z)=\left|z^{2}\right|+3$

When evaluating the range, we need to keep in mind the following (starting with variable z):

- squaring always gives a positive or 0 , so $z^{2} \geq 0$;
- absolute value is always positive or 0 , so $\left|z^{2}\right| \geq 0$;
- so $\left|z^{2}\right|+3 \geq 3$.

Hence, the range of this function is $[3, \infty)$.
(7) $f(x)=\frac{6}{2+x^{2}}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0 , so $2+x^{2} \neq 0$;
- so $x^{2} \neq-2$;
- we can square any number and result will always be a positive number or 0 .

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of x can be substituted into f.
(8) $f(w)=-3+|\sqrt{w}|$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- we can only take the square root of positive numbers or 0 , so $w \geq 0$.

Hence, the domain of this function is $[0, \infty)$, i.e. $w \geq 0$.
When evaluating the range, we need to keep in mind the following (starting with variable w):

- square root is always positive or 0 , so $\sqrt{w} \geq 0$;
- absolute value is always positive or 0 , so $|\sqrt{w}| \geq 0$;
- so $-3+|\sqrt{w}| \geq-3$.

Hence, the range of this function is $[-3, \infty)$.
(9) ${ }^{* *}$
$f(x)=\frac{4}{1+|x|}$
When evaluating the range, we need to keep in mind the following (starting with variable x):

- absolute value is always positive or 0 , so $0 \leq|x|$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0 ;
- so $1 \leq 1+|x|$.

Hence, the range of this function is $(0,4]$.

