MATH1040 Basic Mathematics Practice Problems 7 SOLUTIONS

- **1.** (1) $f(y) = -2y^2 9y 1$, so $f(-4) = -2 \times (-4)^2 - 9 \times (-4) - 1 = -32 + 36 - 1 = 3$ (2) y(-8y+7) = 0, so

$$y = 0 \qquad or \qquad -8y + 7 = 0$$
$$-8y = -7$$
$$y = \frac{7}{8}$$

(3) $-3z^2 - 6z - 6 = 0$, so we use a = -3, b = -6, c = -6 in the quadratic formula. Hence

$$z = \frac{6 \pm \sqrt{(-6)^2 - 4 \times (-3) \times (-6)}}{2 \times (-3)}$$
$$= \frac{6 \pm \sqrt{36 - 72}}{-6}$$
$$= \frac{6 \pm \sqrt{-36}}{-6}$$

Hence there is no solution.

(4) To solve each of these, remember that if $a \times b = 0$, then either a = 0 or b = 0; and also that $0^n = 0$ for any natural number n. Then:

i.
$$-3y(-4-6y) = 0$$
, so
 $-3y = 0$ or $-4-6y = 0$
 $y = 0$ $-6y = 4$
 $y = \frac{4}{-6}$
 $y = -\frac{2}{3}$
ii. $(1-2z)(9z+10) = 0$, so
 $1-2z = 0$ or $9z+10 = 0$
 $-2z = -1$ $9z = -10$
 $z = \frac{1}{2}$ $z = -\frac{10}{9}$
iii. $6(-3z-7)(-3z+1) = 0$, so
 $-3z - 7 = 0$ or $-3z + 1 = 0$
 $-3z = 7$ $-3z = -1$
 $z = -\frac{7}{3}$ $z = \frac{1}{3}$
iv. $(8-8x)^3 = 0$, so $8-8x = 0$, so $-8x = -8$, so $x = \frac{-8}{-8}$, so $x = 1$

(5) $f(x) = -7 + |x^2|$

- When determining the domain of this function, we need to keep in mind the following:
 - we can find the absolute value of any number;
 - we can square any number.

Hence, the domain of this function is $(-\infty,\infty)$, i.e. any value of x can be substituted into f. (6) $f(w) = 3 + |\sqrt{w}|$

When evaluating the range, we need to keep in mind the following (starting with variable w):

- square root is always positive or 0, so $\sqrt{w} > 0$;
- absolute value is always positive or 0, so $|\sqrt{w}| \ge 0$;
- so $3 + |\sqrt{w}| \ge 3$.

Hence, the range of this function is $[3,\infty)$.

(7)
$$f(z) = \frac{6}{|z| + 10}$$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0, so $|z| + 10 \neq 0$;
- so $|z| \neq -10;$
- we can find the absolute value of any number. It will always be positive or 0.

Hence, the domain of this function is $(-\infty,\infty)$, i.e. any value of z can be substituted into f.

$$(\mathbf{8}) \ f(x) = \left| \frac{-2}{-x} \right|$$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- denominator of a fraction cannot be 0, so $-x \neq 0$.

Hence, the domain of this function is $(-\infty, 0) \cup (0, \infty)$, i.e. $x \neq 0$.

When evaluating the range, we need to keep in mind the following (starting with variable x):

- negative numerator usually reverse the inequality, and also this fraction can't be 0, so $\frac{-2}{-x} \neq 0$;
- absolute value is always positive or 0, so $\left|\frac{-2}{-x}\right| > 0$.

Hence, the range of this function is $(0, \infty)$.

(9) **

 $f(x) = \frac{-10}{10 + \sqrt{x}}$

When evaluating the range, we need to keep in mind the following (starting with variable x):

- square root is always positive or 0, so $0 \le \sqrt{x}$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0;
- so $10 \le 10 + \sqrt{x}$.

Hence, the range of this function is [-1, 0).

2. (1)
$$f(y) = -3y^2 - 10y - 10$$
, so
 $f(5) = -3 \times 5^2 - 10 \times 5 - 10 = -75 - 50 - 10 = -135$
(2) $(7z - 4)(-10z + 1) = 0$, so

(2)
$$(7z-4)(-10z+1) = 0$$
, so

$$7z - 4 = 0 or -10z + 1 = 07z = 4 -10z = -1z = \frac{4}{7} z = \frac{1}{10}$$

(3) $-5y^2 - 10y + 15 = 0$, so we use a = -5, b = -10, c = 15 in the quadratic formula. Hence

$$y = \frac{10 \pm \sqrt{(-10)^2 - 4 \times (-5) \times 15}}{2 \times (-5)}$$
$$= \frac{10 \pm \sqrt{100 - (-300)}}{-10}$$
$$= \frac{10 \pm \sqrt{400}}{-10}$$
$$= \frac{10 \pm 20}{-10} \text{ or } \frac{10 - 20}{-10}$$
$$= \frac{30}{-10} \text{ or } \frac{-10}{-10}$$
$$= -3 \text{ or } 1$$

- (4) To solve each of these, remember that if $a \times b = 0$, then either a = 0 or b = 0; and also that $0^n = 0$ for any natural number n. Then:
 - i. y(8+4y) = 0, so $or \qquad \qquad 8+4y=0$ y = 04y = -8 $y = \frac{-8}{4}$ y = -2ii. (-8+2z)(1+9z) = 0, so $-8 + 2z = 0 \qquad or$ 2z = 8 $z = \frac{8}{2}$ 1 + 9z = 09z = -1 $z = -\frac{1}{9}$ z = 4**iii**. 5(4z - 8)4

8)
$$(-5z + 7) = 0$$
, so
 $z - 8 = 0$ or $-5z + 7 = 0$
 $4z = 8$ $-5z = -7$

$$z = \frac{8}{4}$$
$$z = 2$$
$$z = \frac{7}{5}$$

iv. $(-9+5x)^4 = 0$, so -9+5x = 0, so 5x = 9, so $x = \frac{9}{5}$

(5) $f(w) = \sqrt{\left(\frac{7}{w}\right)^2}$

When determining the domain of this function, we need to keep in mind the following:

- we can only take the square root of positive numbers or 0, so $\left(\frac{7}{w}\right)^2 \ge 0;$
- we can square any number;
- denominator of a fraction cannot be 0, so $w \neq 0$.

Hence, the domain of this function is $(-\infty, 0) \cup (0, \infty)$, i.e. $w \neq 0$.

(6) $f(w) = \sqrt{6 \times \frac{7}{w}}$

When evaluating the range, we need to keep in mind the following (starting with variable w):

- fraction can be 0 only if numerator is 0, so $\frac{7}{w} \neq 0$;
- square root is always positive or 0, so $\sqrt{6 \times \frac{7}{m}} > 0$.

Hence, the range of this function is $(0, \infty)$.

(7) $f(z) = \frac{12}{-9 + \sqrt{z}}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0, so $-9 + \sqrt{z} \neq 0$;
- so $\sqrt{z} \neq 9$;
- we can only take the square root of positive number or 0, so $z \neq 81$ and $0 \leq z$.
- Hence, the domain of this function is $[0,81)\cup(81,\infty)$, i.e. $z\neq 81$ and $0\leq z$.

(8)
$$f(w) = \sqrt{w^2} + 5$$

When determining the domain of this function, we need to keep in mind the following:

- we can only take the square root of positive numbers or 0, so $w^2 \ge 0$;
- we can square any number.

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of w can be substituted into f. When evaluating the range, we need to keep in mind the following (starting with variable w):

- squaring always gives a positive or 0, so $w^2 \ge 0$;
- square root is always positive or 0, so $\sqrt{w^2} \ge 0$;

• so
$$\sqrt{w^2 + 5} \ge 5$$
.

Hence, the range of this function is $[5,\infty)$.

(9) **

 $f(z) = \frac{1}{z^2 + 3}$

When evaluating the range, we need to keep in mind the following (starting with variable z):

- squaring always gives a positive or 0, so $0 \le z^2$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0;
- so $3 \le z^2 + 3$.

Hence, the range of this function is $(0, \frac{1}{3}]$.

3. (1)
$$f(z) = -7z - 6$$
, so $f(9) = -7 \times 9 - 6 = -63 - 6 = -69$

(2)
$$7y(3y-3) = 0$$
, so

$$7y = 0 \qquad or \qquad 3y - 3 = 0$$
$$y = 0 \qquad \qquad 3y = 3$$
$$y = \frac{3}{3}$$
$$y = 1$$

(3) $5z^2 - 15z - 50 = 0$, so we use a = 5, b = -15, c = -50 in the quadratic formula. Hence

$$z = \frac{15 \pm \sqrt{(-15)^2 - 4 \times 5 \times (-50)}}{2 \times 5}$$

= $\frac{15 \pm \sqrt{225 - (-1000)}}{10}$
= $\frac{15 \pm \sqrt{1225}}{10}$
= $\frac{15 + 35}{10}$ or $\frac{15 - 35}{10}$
= $\frac{50}{10}$ or $\frac{-20}{10}$
= 5 or -2

- (4) To solve each of these, remember that if $a \times b = 0$, then either a = 0 or b = 0; and also that $0^n = 0$ for any natural number n. Then:
 - i. 10z(8+3z) = 0, so

10z = 0	or	8+3z=0
z = 0		3z = -8
		$z = -\frac{8}{3}$

ii. (-10 - 10x)(2x - 5) = 0, so

$$\begin{array}{rcl}
-10 - 10x = 0 & or & 2x - 5 = 0 \\
-10x = 10 & 2x = 5 \\
x = \frac{10}{-10} & x = \frac{5}{2} \\
x = -1 & \end{array}$$

iii. 4(-6-6y)(-6+9y) = 0, so

-6 - 6	y = 0	or	-6 + 9y = 0
-6	y = 6		9y = 6
	$y = \frac{6}{-6}$		$y = \frac{6}{9}$
	y = -1		$y = \frac{2}{3}$
iv . $(3+7x)^9 = 0$	0, so 3 + 7x =	= 0, so 7x = -	-3, so $x = -\frac{3}{7}$

(5) $f(z) = \frac{-9}{\sqrt{-4+z}}$ When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0, so $\sqrt{-4+z} \neq 0$;
- we can only take the square root of positive numbers or 0, so -4 + z > 0; • so z > 4.

Hence, the domain of this function is $(4,\infty)$, i.e. z>4 .

(6) $f(x) = \sqrt{2|x|}$

- When evaluating the range, we need to keep in mind the following (starting with variable x):
 - absolute value is always positive or 0, so $|x| \ge 0$;

• square root is always positive or 0, so $\sqrt{2|x|} \ge 0$.

Hence, the range of this function is $[0,\infty)$.

(7)
$$f(z) = \frac{6}{1 - 12z}$$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0, so $1 12z \neq 0$;
- so $-12z \neq -1;$

• so
$$z \neq \overline{12}$$
.

Hence, the domain of this function is $(-\infty, \frac{1}{12}) \cup (\frac{1}{12}, \infty)$, i.e. $z \neq \frac{1}{12}$.

(8)
$$f(x) = |x^2|$$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- we can square any number.

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of x can be substituted into f. When evaluating the range, we need to keep in mind the following (starting with variable x):

- squaring always gives a positive or 0, so $x^2 \ge 0$;
- absolute value is always positive or 0, so $|x^2| \ge 0$.

Hence, the range of this function is $[0,\infty)$.

(9) **

 $f(x) = \frac{11}{-5 + |x|}$

When evaluating the range, we need to keep in mind the following (starting with variable x):

- absolute value is always positive or 0, so $0 \le |x|$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0;
- so $-5 \le -5 + |x|$ and $-5 + |x| \neq 0$.

Hence, the range of this function is $(-\infty, -\frac{11}{5}) \cup (0, \infty)$.

4. (1) $f(x) = -3x^2 - 8x$, so $f(0) = -3 \times 0^2 - 8 \times 0 = 0 + 0 = 0$ (2) -9y(-10 + 6y) = 0, so

$$-9y = 0 \qquad or \qquad -10 + 6y = 0$$
$$y = 0 \qquad \qquad 6y = 10$$
$$y = \frac{10}{6}$$
$$y = \frac{5}{3}$$

(3) $-4x^2 - 36x - 80 = 0$, so we use a = -4, b = -36, c = -80 in the quadratic formula. Hence

$$x = \frac{36 \pm \sqrt{(-36)^2 - 4 \times (-4) \times (-80)}}{2 \times (-4)}$$

= $\frac{36 \pm \sqrt{1296 - 1280}}{-8}$
= $\frac{36 \pm \sqrt{16}}{-8}$
= $\frac{36 \pm 4}{-8}$ or $\frac{36 - 4}{-8}$
= $\frac{40}{-8}$ or $\frac{32}{-8}$
= -5 or -4

(4) To solve each of these, remember that if $a \times b = 0$, then either a = 0 or b = 0; and also that $0^n = 0$ for any natural number n. Then:

		,	/	`
-3x - 4 = 0	or		9x = 0	
-3x = 4			x = 0	
$x = -\frac{4}{3}$				

ii. (-3x+7)(-4+8x) = 0, so

i. 9x(-3x-4) = 0, so

$$-3x + 7 = 0 \qquad or \qquad -4 + 8x = 0$$
$$-3x = -7 \qquad 8x = 4$$
$$x = \frac{7}{3} \qquad x = \frac{4}{8}$$
$$x = \frac{1}{2}$$

iii. 6(-10x-1)(-8x-8) = 0, so

$$\begin{array}{rcl}
-10x - 1 = 0 & or & -8x - 8 = 0 \\
-10x = 1 & -8x = 8 \\
x = -\frac{1}{10} & x = \frac{8}{-8} \\
x = -1
\end{array}$$

iv. $(10z - 1)^1 = 0$, so 10z - 1 = 0, so 10z = 1, so $z = \frac{1}{10}$

(5) $f(w) = -3\sqrt{w-4}$

When determining the domain of this function, we need to keep in mind the following:

- we can only take the square root of positive numbers or 0, so $w 4 \ge 0$;
- so $w \ge 4$.

Hence, the domain of this function is $[4,\infty)$, i.e. $w\geq 4$.

(6) $f(w) = 2 + \sqrt{w^2}$

- When evaluating the range, we need to keep in mind the following (starting with variable w):
 - squaring always gives a positive or 0, so $w^2 \ge 0$;
 - square root is always positive or 0, so $\sqrt{w^2} \ge 0$;

• so $2 + \sqrt{w^2} \ge 2$.

Hence, the range of this function is $[2,\infty)$.

(7)
$$f(z) = \frac{-12}{z^2 + 4}$$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0, so $z^2 + 4 \neq 0$;
- so $z^2 \neq -4;$

• we can square any number and result will always be a positive number or 0.

Hence, the domain of this function is $(-\infty,\infty)~$, i.e. any value of z can be substituted into f .

(8)
$$f(z) = -9 + \frac{10}{z^2}$$

When determining the domain of this function, we need to keep in mind the following:

- there are no square roots or absolute value signs;
- denominator of a fraction cannot be 0, so $z^2 \neq 0$;
- we can square any number.

Hence, the domain of this function is $(-\infty, 0) \cup (0, \infty)$, i.e. $z \neq 0$.

When evaluating the range, we need to keep in mind the following (starting with variable z):

- there are no square roots or absolute value signs;
- squaring always gives a positive or 0, so $z^2 \ge 0$;
- fraction can be 0 only if numerator is 0, so $\frac{10}{z^2} > 0$;

• so
$$-9 + \frac{10}{z^2} > -9.$$

Hence, the range of this function is $(-9, \infty)$.

 $f(x) = \frac{-3}{11x + 5}$

When evaluating the range, we need to keep in mind the following (starting with variable x):

• there are no squares, square roots or absolute value signs ;

• fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0. Hence, the range of this function is $(-\infty, 0) \cup (0, \infty)$.

- **5.** (1) $f(y) = 6y^2 + 7y + 8$, so
 - (1) $f(4) = 6 \times 4^2 + 7 \times 4 + 8 = 96 + 28 + 8 = 132$ (2) 9(-3-5x)(5x+8) = 0, so

 $\begin{array}{rcl}
-3 - 5x = 0 & or & 5x + 8 = 0 \\
-5x = 3 & 5x = -8 \\
x = -\frac{3}{5} & x = -\frac{8}{5}
\end{array}$

(3) $y^2 - 10y + 25 = 0$, so we use a = 1, b = -10, c = 25 in the quadratic formula. Hence

$$y = \frac{10 \pm \sqrt{(-10)^2 - 4 \times 1 \times 25}}{2 \times 1}$$

= $\frac{10 \pm \sqrt{100 - 100}}{2}$
= $\frac{10 \pm \sqrt{0}}{2}$
= $\frac{10 \pm \sqrt{0}}{2}$
= $\frac{10}{2}$
= 5

(4) To solve each of these, remember that if $a \times b = 0$, then either a = 0 or b = 0; and also that $0^n = 0$ for any natural number n. Then:

x = 8

i. 5z(9+3z) = 0, so

$$5z = 0 \qquad or \qquad 9 + 3z = 0$$
$$z = 0 \qquad \qquad 3z = -9$$
$$z = \frac{-9}{3}$$
$$z = -3$$

ii.
$$(-6+2y)(-2+4y) = 0$$
, so

-6 + 2y = 0	or	-2 + 4y = 0
2y = 6		4y = 2
$y = \frac{6}{2}$		$y = \frac{2}{4}$
y = 3		$y = \frac{1}{2}$

iii.
$$5(-10-9x)(x-8) = 0$$
, so
 $-10-9x = 0$ or $x-8 = 0$
 $-9x = 10$ $x = 8$

$$x = -\frac{10}{9}$$

iv. $(4z+1)^6 = 0$, so 4z+1=0, so 4z = -1, so $z = -\frac{1}{4}$

(5) $f(z) = \left| \frac{-1}{\sqrt{z}} \right|$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- denominator of a fraction cannot be 0, so $\sqrt{z} \neq 0$;

• we can only take the square root of positive numbers or 0, so z > 0.

Hence, the domain of this function is $(0,\infty)$, i.e. z > 0.

(6) $f(z) = |z^2| + 3$

When evaluating the range, we need to keep in mind the following (starting with variable z):

- squaring always gives a positive or 0, so $z^2 > 0$;
- absolute value is always positive or 0, so $|z^2| \ge 0$;
- so $|z^2| + 3 \ge 3$.

Hence, the range of this function is $[3, \infty)$.

(7) $f(x) = \frac{6}{2+x^2}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0, so $2 + x^2 \neq 0$;
- so $x^2 \neq -2;$

• we can square any number and result will always be a positive number or 0.

Hence, the domain of this function is $(-\infty,\infty)$, i.e. any value of x can be substituted into f. (8) $f(w) = -3 + |\sqrt{w}|$

When determining the domain of this function, we need to keep in mind the following:

• we can find the absolute value of any number;

• we can only take the square root of positive numbers or 0, so $w \ge 0$.

Hence, the domain of this function is $[0,\infty)$, i.e. $w\geq 0$.

When evaluating the range, we need to keep in mind the following (starting with variable w):

- square root is always positive or 0, so $\sqrt{w} \ge 0$;
- absolute value is always positive or 0, so $|\sqrt{w}| \ge 0$;
- so $-3 + |\sqrt{w}| \ge -3$.
- Hence, the range of this function is $[-3,\infty)$.

(9) **

 $f(x) = \frac{4}{1+|x|}$

When evaluating the range, we need to keep in mind the following (starting with variable x):

- absolute value is always positive or 0, so $0 \le |x|$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0;
- so $1 \le 1 + |x|$.

Hence, the range of this function is (0, 4].