MATH1040 Basic Mathematics Practice Problems 6 SOLUTIONS

1. (1) First we number the equations for convenience:

$$
\begin{gather*}
-5 y=-110+9 x \tag{1}\\
0=-9 y-63+36 x \tag{2}
\end{gather*}
$$

We solve these using substitution. Rearranging equation (2) with y on the left-hand side gives

$$
\begin{equation*}
9 y=36 x-63 \tag{3}
\end{equation*}
$$

Dividing both sides of (3) by 9 , gives

$$
\begin{equation*}
y=4 x-7 \tag{4}
\end{equation*}
$$

Substituting for y in equation (1),

$$
\begin{equation*}
-5 \times(4 x-7)=-110+9 x \tag{5}
\end{equation*}
$$

Now (5) is an equation only involving x which gives:

$$
\begin{aligned}
-20 x+35 & =-110+9 x \\
-29 x & =-145 \\
x & =5
\end{aligned}
$$

Next we substitute the value for x into equation (4) to obtain the value for y, giving

$$
y=4 \times 5-7=13
$$

Hence the simultaneous solution to equations (1) and (2) is $(5,13)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $-5 \times 13=-110+9 \times 5$
$-65=-110+45$
$-65=-65$
(2) $0=-9 \times 13-63+36 \times 5$
$0=-117-63+180$
$0=0$

Both equations turned into true statements, as required. Hence the answer is correct.)
(2) Let $z=\cos x$. Now we have two linear simultaneous equations, which we also number for convenience:

$$
\begin{array}{r}
-3 y-9 z=-9 \\
7 y-8 z=-8 \tag{2}
\end{array}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by 7 and equation (2) by 3 , giving

$$
\begin{align*}
-21 y-63 z & =-63 \tag{3}\\
21 y-24 z & =-24 \tag{4}
\end{align*}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
-21 y+21 y-63 z-24 z=-63-24 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
-87 z=-87 \\
z=1 \tag{7}
\end{array}
$$

Next we substitute the value for z into equation (1) to obtain the value for y, giving

$$
\begin{aligned}
-3 y-9 \times 1 & =-9 \\
-3 y & =0 \\
y & =0
\end{aligned}
$$

Now we can find the value of $x: \quad \cos x=1, \quad$ so $x=0$
Hence the simultaneous solution to equations (1) and (2) is $x=0 ; \quad y=0$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $-3 \times 0-9 \times \cos 0=-9$
$-3 \times 0-9 \times 1=-9$
$-9=-9$
(2) $7 \times 0-8 \times \cos 0=-8$
$7 \times 0-8 \times 1=-8$
$-8=-8$

Both equations turned into true statements, as required. Hence the answer is correct.)
(3) We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{array}{r}
-7 y=-113+3 x \\
-8-2 x=-12 y \tag{2}
\end{array}
$$

We solve these using substitution. Rearranging equation (2) with x on the left-hand side gives

$$
\begin{equation*}
-2 x=-12 y+8 \tag{3}
\end{equation*}
$$

Dividing both sides of (3) by -2 , gives

$$
\begin{equation*}
x=6 y-4 \tag{4}
\end{equation*}
$$

Substituting for x in equation (1),

$$
\begin{equation*}
-7 y=-113+3 \times(6 y-4) \tag{5}
\end{equation*}
$$

Now (5) is an equation only involving y which gives:

$$
\begin{aligned}
-7 y & =-113+18 y-12 \\
-25 y & =-125 \\
y & =5
\end{aligned}
$$

Next we substitute the value for y into equation (4) to obtain the value for x, giving

$$
x=6 \times 5-4=26
$$

Hence the simultaneous solution to equations (1) and (2) is $(26,5)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):

$$
\begin{array}{lrl}
\text { (1) } & -7 \times 5=-113+3 \times 26 & \text { (2) } \\
-8-2 \times 26=-12 \times 5 \\
& -35=-113+78 & -8-52=-60 \\
& -35=-35 & -60=-60
\end{array}
$$

Both equations turned into true statements, as required. Hence the answer is correct.)
2. (1) First we number the equations for convenience:

$$
\begin{array}{r}
-7 y=-49 x-14 \\
93=10 y+3 x \tag{2}
\end{array}
$$

We solve these using substitution. Dividing both sides of equation (1) by -7 gives

$$
\begin{equation*}
y=7 x+2 \tag{3}
\end{equation*}
$$

Substituting for y in equation (2),

$$
\begin{equation*}
93=10 \times(7 x+2)+3 x \tag{4}
\end{equation*}
$$

Now (4) is an equation only involving x which gives:

$$
\begin{aligned}
93 & =70 x+20+3 x \\
73 & =73 x \\
1 & =x
\end{aligned}
$$

Next we substitute the value for x into equation (3) to obtain the value for y, giving

$$
y=7 \times 1+2=9
$$

Hence the simultaneous solution to equations (1) and (2) is $(1,9)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $-7 \times 9=-49 \times 1-14$
(2) $93=10 \times 9+3 \times 1$
$-63=-49-14$
$93=90+3$
$-63=-63$
$93=93$

Both equations turned into true statements, as required. Hence the answer is correct.)
(2) Let $z=\sqrt{y}$. Now we have two linear simultaneous equations, which we also number for convenience:

$$
\begin{align*}
& -4 x-3 z=-24 \tag{1}\\
& -13 x+9 z=-3 \tag{2}
\end{align*}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by 3 , giving

$$
\begin{array}{r}
-12 x-9 z=-72 \\
-13 x+9 z=-3 \tag{4}
\end{array}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
-12 x-13 x-9 z+9 z=-72-3 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
-25 x=-75 \\
x=3 \tag{7}
\end{array}
$$

Next we substitute the value for x into equation (1) to obtain the value for z, giving

$$
\begin{aligned}
-4 \times 3-3 z & =-24 \\
-3 z & =-12 \\
z & =4
\end{aligned}
$$

Now we can find the value of $y: \quad \sqrt{y}=4, \quad$ so $y=16$
Hence the simultaneous solution to equations (1) and (2) is $x=3 ; \quad y=16$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):

$$
\begin{aligned}
& \text { (1) }-4 \times 3-3 \times \sqrt{16}=-24 \\
& -4 \times 3-3 \times 4=-24 \\
& -12-12=-24 \\
& -24=-24 \\
& \text { (2) }-13 \times 3+9 \times \sqrt{16}=-3 \\
& -13 \times 3+9 \times 4=-3 \\
& -39+36=-3 \\
& -3=-3
\end{aligned}
$$

Both equations turned into true statements, as required. Hence the answer is correct.)
(3) We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{array}{r}
2 y-2=-8 x \\
0=-9 y+18-36 x \tag{2}
\end{array}
$$

We solve these using substitution. Rearranging equation (2) with y on the left-hand side gives

$$
\begin{equation*}
9 y=-36 x+18 \tag{3}
\end{equation*}
$$

Dividing both sides of (3) by 9 , gives

$$
\begin{equation*}
y=-4 x+2 \tag{4}
\end{equation*}
$$

Substituting for y in equation (1),

$$
\begin{equation*}
2 \times(-4 x+2)-2=-8 x \tag{5}
\end{equation*}
$$

Now (5) is an equation only involving x which gives:

$$
\begin{aligned}
-8 x+4-2 & =-8 x \\
2 & =0
\end{aligned}
$$

This statement is never true, so there is no solution to our simultaneous equations. The lines are parallel.
3. (1) First we number the equations for convenience:

$$
\begin{array}{r}
10 y-488=9 x \\
-2 y=-14 x \tag{2}
\end{array}
$$

We solve these using substitution. Dividing both sides of equation (2) by -2 gives

$$
\begin{equation*}
y=7 x \tag{3}
\end{equation*}
$$

Substituting for y in equation (1),

$$
\begin{equation*}
10 \times 7 x-488=9 x \tag{4}
\end{equation*}
$$

Now (4) is an equation only involving x which gives:

$$
\begin{aligned}
70 x-488 & =9 x \\
61 x & =488 \\
x & =8
\end{aligned}
$$

Next we substitute the value for x into equation (3) to obtain the value for y, giving

$$
y=7 \times 8=56
$$

Hence the simultaneous solution to equations (1) and (2) is $(8,56)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $10 \times 56-488=9 \times 8$
(2) $-2 \times 56=-14 \times 8$
$560-488=72$
$-112=-112$
$72=72$

Both equations turned into true statements, as required. Hence the answer is correct.)
(2) Let $z=\tan x$. Now we have two linear simultaneous equations, which we also number for convenience:

$$
\begin{align*}
& -8 y+3 z=75 \tag{1}\\
& -3 y+4 z=31 \tag{2}
\end{align*}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by -4 and equation (2) by 3 , giving

$$
\begin{array}{r}
32 y-12 z=-300 \\
-9 y+12 z=93 \tag{4}
\end{array}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
-9 y+32 y+12 z-12 z=93-300 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
23 y=-207 \\
y=-9 \tag{7}
\end{array}
$$

Next we substitute the value for y into equation (1) to obtain the value for z, giving

$$
\begin{aligned}
-8 \times(-9)+3 z & =75 \\
3 z & =3 \\
z & =1
\end{aligned}
$$

Now we can find the value of $x: \quad \tan x=1, \quad$ so $x=\frac{\pi}{4} ; \frac{5 \pi}{4}$
Hence the simultaneous solution to equations (1) and (2) is $x=\frac{\pi}{4} ; \frac{5 \pi}{4} ; \quad y=-9$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):

$$
\begin{aligned}
\text { (1) }-8 \times(-9)+3 \times \tan \frac{\pi}{4} & =75 \\
-8 \times(-9)+3 \times 1 & =75 \\
72+3 & =75 \\
75 & =75
\end{aligned}-3 \times(-9)+4 \times \tan \frac{\pi}{4}=319 \times 1=319+4=319+31=31
$$

We have checked one value of x, you do the other!)
(3) We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{equation*}
-10 y=10 x+90 \tag{1}
\end{equation*}
$$

We solve these using substitution. Rearranging equation (2) with y on the left-hand side gives

$$
\begin{equation*}
4 y=-4 x-36 \tag{3}
\end{equation*}
$$

Dividing both sides of (3) by 4 , gives

$$
\begin{equation*}
y=-x-9 \tag{4}
\end{equation*}
$$

Substituting for y in equation (1),

$$
\begin{equation*}
-10 \times(-x-9)=10 x+90 \tag{5}
\end{equation*}
$$

Now (5) is an equation only involving x which gives:

$$
\begin{aligned}
10 x+90 & =10 x+90 \\
90 & =90
\end{aligned}
$$

This statement is always true, so there is an infinite number of solutions to our simultaneous equations. The lines are superimposed.
4. (1) First we number the equations for convenience:

$$
\begin{array}{r}
4 x+2 y=2 \\
11 x-9 y=-67 \tag{2}
\end{array}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by 9 and equation (2) by 2 , giving

$$
\begin{array}{r}
36 x+18 y=18 \\
22 x-18 y=-134 \tag{4}
\end{array}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
36 x+22 x+18 y-18 y=18-134 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
58 x=-116 \\
x=-2 \tag{7}
\end{array}
$$

Next we substitute the value for x into equation (1) to obtain the value for y, giving

$$
\begin{aligned}
4 \times(-2)+2 y & =2 \\
2 y & =10 \\
y & =5
\end{aligned}
$$

Hence the simultaneous solution to equations (1) and (2) is $(-2,5)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $4 \times(-2)+2 \times 5=2$

$$
\begin{aligned}
-8+10 & =2 \\
2 & =2
\end{aligned}
$$

(2) $11 \times(-2)-9 \times 5=-67$
$-22-45=-67$
$-67=-67$

Both equations turned into true statements, as required. Hence the answer is correct.)
(2) Let $z=\ln y$. Now we have two linear simultaneous equations, which we also number for convenience:

$$
\begin{array}{r}
8 x+8 z=0 \\
3 x-5 z=-8 \tag{2}
\end{array}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by 3 and equation (2) by -8 , giving

$$
\begin{array}{r}
24 x+24 z=0 \\
-24 x+40 z=64 \tag{4}
\end{array}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
-24 x+24 x+40 z+24 z=64 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
64 z=64 \\
z=1 \tag{7}
\end{array}
$$

Next we substitute the value for z into equation (1) to obtain the value for x, giving

$$
\begin{aligned}
8 x+8 \times 1 & =0 \\
8 x & =-8 \\
x & =-1
\end{aligned}
$$

Now we can find the value of $y: \quad \ln y=1, \quad$ so $y=e$
Hence the simultaneous solution to equations (1) and (2) is $x=-1 ; \quad y=e$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):

$$
\begin{aligned}
& \text { (1) } 8 \times(-1)+8 \times \ln e=0 \\
& 8 \times(-1)+8 \times 1=0 \\
& -8+8=0 \\
& 0=0 \\
& \text { (2) } 3 \times(-1)-5 \times \ln e=-8 \\
& 3 \times(-1)-5 \times 1=-8 \\
& -3-5=-8 \\
& -8=-8
\end{aligned}
$$

Both equations turned into true statements, as required. Hence the answer is correct.)
(3) We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{array}{r}
3 x+4 y=54 \\
-13 x+7 y=-88 \tag{2}
\end{array}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by -7 and equation (2) by 4 , giving

$$
\begin{align*}
& -21 x-28 y=-378 \tag{3}\\
& -52 x+28 y=-352 \tag{4}
\end{align*}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
-21 x-52 x-28 y+28 y=-378-352 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
-73 x=-730 \\
x=10 \tag{7}
\end{array}
$$

Next we substitute the value for x into equation (1) to obtain the value for y, giving

$$
\begin{aligned}
3 \times 10+4 y & =54 \\
4 y & =24 \\
y & =6
\end{aligned}
$$

Hence the simultaneous solution to equations (1) and (2) is $(10,6)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $3 \times 10+4 \times 6=54$

$$
\begin{aligned}
30+24 & =54 \\
54 & =54
\end{aligned}
$$

(2) $-13 \times 10+7 \times 6=-88$
$-130+42=-88$
$-88=-88$

Both equations turned into true statements, as required. Hence the answer is correct.)
5. (1) First we number the equations for convenience:

$$
\begin{align*}
& -3 x-2 y=-14 \tag{1}\\
& 30 x+20 y=154 \tag{2}
\end{align*}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by 10 , giving

$$
\begin{array}{r}
-30 x-20 y=-140 \\
30 x+20 y=154 \tag{4}
\end{array}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
-30 x+30 x-20 y+20 y=-140+154 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{equation*}
0=14 \tag{6}
\end{equation*}
$$

Statement (6) is never true, so there is no solution to our simultaneous equations. The lines are parallel.
(2) Let $z=\ln y$. Now we have two linear simultaneous equations, which we also number for convenience:

$$
\begin{array}{r}
2 z-4 x=16 \\
10 z+9 x=-36 \tag{2}
\end{array}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by -5 , giving

$$
\begin{align*}
-10 z+20 x & =-80 \tag{3}\\
10 z+9 x & =-36 \tag{4}
\end{align*}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
-10 z+10 z+20 x+9 x=-80-36 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
29 x=-116 \\
x=-4 \tag{7}
\end{array}
$$

Next we substitute the value for x into equation (1) to obtain the value for z, giving

$$
\begin{aligned}
2 z-4 \times(-4) & =16 \\
2 z & =0 \\
z & =0
\end{aligned}
$$

Now we can find the value of $y: \quad \ln y=0, \quad$ so $y=1$

Hence the simultaneous solution to equations (1) and (2) is $x=-4 ; \quad y=1$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $2 \times \ln 1-4 \times(-4)=16$
$2 \times 0-4 \times(-4)=16$

$$
16=16
$$

(2) $10 \times \ln 1+9 \times(-4)=-36$
$10 \times 0+9 \times(-4)=-36$ $-36=-36$

Both equations turned into true statements, as required. Hence the answer is correct.)
(3) We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{align*}
0= & -63-9 x+81 y \tag{1}\\
& 31-45 y=-5 x \tag{2}
\end{align*}
$$

We solve these using substitution. Rearranging equation (1) with x on the left-hand side gives

$$
\begin{equation*}
9 x=81 y-63 \tag{3}
\end{equation*}
$$

Dividing both sides of (3) by 9 , gives

$$
\begin{equation*}
x=9 y-7 \tag{4}
\end{equation*}
$$

Substituting for x in equation (2),

$$
\begin{equation*}
31-45 y=-5 \times(9 y-7) \tag{5}
\end{equation*}
$$

Now (5) is an equation only involving y which gives:

$$
\begin{aligned}
31-45 y & =-45 y+35 \\
31 & =35
\end{aligned}
$$

This statement is never true, so there is no solution to our simultaneous equations. The lines are parallel.

