1. (1) Let $\left(x_{1}, y_{1}\right)=(-8, \sqrt{2})$ and $\left(x_{2}, y_{2}\right)=(-6, \sqrt{2})$. Then $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$, so $d=\sqrt{(-8-(-6))^{2}+(\sqrt{2}-\sqrt{2})^{2}}=\sqrt{(-2)^{2}+0^{2}}=\sqrt{4+0}=\sqrt{4}$.
Hence $d=2$
(2) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
-y & =x+2, \quad \text { so } \\
y & =-x-2
\end{aligned}
$$

Hence the gradient is $m=-1$ and the y-intercept is $c=-2$.
(3) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
-9 x-8+10 y & =6 y-3+8 x, \text { so } \\
10 y-6 y & =8 x+9 x-3+8 \\
4 y & =17 x+5 \\
y & =\frac{17}{4} x+\frac{5}{4}
\end{aligned}
$$

Hence the gradient is $m=\frac{17}{4}$ and the y-intercept is $c=\frac{5}{4}$.
(4) Thus the equation of the line is $y=6 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(9,10)$ into this equation to get the value for c. Hence $10=6 \times 9+c$, so $-44=c$.
Hence the equation of the line is $y=6 x-44$.
(5) Let $\left(x_{1}, y_{1}\right)=(-8,8)$ and $\left(x_{2}, y_{2}\right)=(1,9)$. To find the equation of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ you must find the gradient m and the y-intercept c.
Then $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-8}{1-(-8)}=\frac{1}{9}$. Hence $m=\frac{1}{9}$.
Thus the equation of the line is $y=\frac{1}{9} x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-8,8)$ into this equation to get the value for c.
Hence $8=\frac{1}{9} \times(-8)+c$, so $8=-\frac{8}{9}+c$. Hence $c=8-\left(-\frac{8}{9}\right)=\frac{80}{9}$.
Hence the equation of the line is $y=\frac{1}{9} x+\frac{80}{9}$.
(6) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-10 y & =-60-30 x, \text { so } \\
y & =3 x+6
\end{aligned}
$$

Hence, the gradient of the original line is $m=3$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $\quad y=3 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(3,0)$ into this equation to get the value for c.
$0=3 \times 3+c$, so $0=9+c$. Hence $c=0-9=-9$.
Hence the equation of the line is $\quad y=3 x-9$.
(7) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-2 x-1-2 y & =-6 x+5-y, \text { so } \\
-2 y+y & =-6 x+2 x+5+1 \\
-y & =-4 x+6 \\
y & =4 x-6
\end{aligned}
$$

Hence, the gradient of the original line is $m=4$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $y=4 x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-2,-10)$ into this equation to get the value for c.
$-10=4 \times(-2)+c$, so $-10=-8+c$. Hence $c=-10-(-8)=-2$.
Hence the equation of the line is $\quad y=4 x-2$.
(8) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
0 & =10 y-10 x-40, \text { so } \\
-10 y & =-10 x-40 \\
y & =x+4
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=1$.
The new line is perpendicular to the original line, so the new line has gradient $m=-\frac{1}{m_{0}}$. Hence $m=-1$.
Thus the equation of the line is $y=-x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=$ $(-6,6)$ into this equation to get the value of c :
$6=6+c$. Hence $c=6-6=0$.
Hence the equation of the line is $y=-x$.
(9) To determine whether the given line passes through the point $\left(x_{1}, y_{1}\right)=(4,-10)$, we need to substitute the coordinates of the point into the equation of the line. Now,

$$
\begin{aligned}
-3 x & =-y+4, \text { so } \\
-3 \times 4 & =10+4 \\
-12 & =10+4 \\
-12 & =14
\end{aligned}
$$

The last statement is not true, so our line does not pass through the point $(4,-10)$.
(10) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
0 & =-15+5 y, \text { so } \\
-5 y & =-15 \\
y & =3
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=0$.
The original line is horizontal (its gradient is equal to 0), so the new line is vertical and has an equation of the form $x=c$. The point $(1,-5)$ lies on the new line, so the equation of the new line is $x=1$.
(11) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
3 y & =-21, \text { so } \\
y & =-7
\end{aligned}
$$

Hence, the gradient of the original line is $m=0$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $\quad y=c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-3,-1)$ into this equation to get the value for c.
$-1=c$.
Hence the equation of the line is $\quad y=-1$.
(12) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the line perpendicular to it will be horizontal with equation of the form $y=c$, where c is a constant.
The point $(-2,10)$ lies on the new line, so the equation of the new line is $y=10$.
(13) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the new line is vertical and has the form $x=c$, where c is a constant.
The point $(3,4)$ lies on the new line, so the equation of the new line is $x=3$.
2. (1) Let $\left(x_{1}, y_{1}\right)=(-7,-2)$ and $\left(x_{2}, y_{2}\right)=(-2,-1)$. Then $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$, so
$d=\sqrt{(-7-(-2))^{2}+(-2-(-1))^{2}}=\sqrt{(-5)^{2}+(-1)^{2}}=\sqrt{25+1}=\sqrt{26}$.
Hence $d=\sqrt{26}$
(2) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
-4 x & =3 y-5, \quad \text { so } \\
-3 y & =4 x-5 \\
y & =-\frac{4}{3} x+\frac{5}{3}
\end{aligned}
$$

Hence the gradient is $m=-\frac{4}{3}$ and the y-intercept is $c=\frac{5}{3}$.
(3) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
6 y-1-2 x & =3 y-4 x+2, \text { so } \\
6 y-3 y & =-4 x+2 x+2+1 \\
3 y & =-2 x+3 \\
y & =-\frac{2}{3} x+1
\end{aligned}
$$

Hence the gradient is $m=-\frac{2}{3}$ and the y-intercept is $c=1$.
(4) Thus the equation of the line is $y=5 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(3,10)$ into this equation to get the value for c. Hence $10=5 \times 3+c$, so $-5=c$.
Hence the equation of the line is $y=5 x-5$.
(5) Let $\left(x_{1}, y_{1}\right)=(-9,9)$ and $\left(x_{2}, y_{2}\right)=(-3,-3)$. To find the equation of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ you must find the gradient m and the y-intercept c.
Then $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-9}{-3-(-9)}=\frac{-12}{6}$. Hence $m=-2$.
Thus the equation of the line is $y=-2 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-9,9)$ into this equation to get the value for c.
Hence $9=-2 \times(-9)+c$, so $9=18+c$. Hence $c=9-18=-9$.
Hence the equation of the line is $y=-2 x-9$.
(6) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
8 y & =-32 x+40, \text { so } \\
y & =-4 x+5
\end{aligned}
$$

Hence, the gradient of the original line is $m=-4$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $y=-4 x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(1,-11)$ into this equation to get the value for c.
$-11=-4 \times 1+c$, so $-11=-4+c$. Hence $c=-11-(-4)=-7$.
Hence the equation of the line is $\quad y=-4 x-7$.
(7) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-5 x-4 y & =y-30-5 x, \text { so } \\
-4 y-y & =-5 x+5 x-30 \\
-5 y & =-30 \\
y & =6
\end{aligned}
$$

Hence, the gradient of the original line is $m=0$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation
of the line is $\quad y=c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(9,-9)$ into this equation to get the value for c.
$-9=c$.
Hence the equation of the line is $\quad y=-9$.
(8) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
& 7=-4 x-y, \text { so } \\
& y=-4 x-7
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=-4$.
The new line is perpendicular to the original line, so the new line has gradient $m=-\frac{1}{m_{0}}$. Hence $m=\frac{1}{4}$.
Thus the equation of the line is $\quad y=\frac{1}{4} x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=$ $(-28,-4)$ into this equation to get the value of c :
$-4=\frac{1}{4} \times(-28)+c$, so $-4=-7+c$. Hence $c=-4-(-7)=3$.
Hence the equation of the line is $\quad y=\frac{1}{4} x+3$.
(9) To determine whether the given line passes through the point $\left(x_{1}, y_{1}\right)=(-5,-4)$, we need to substitute the coordinates of the point into the equation of the line. Now,

$$
\begin{aligned}
-y+2 x & =-6, \text { so } \\
4+2 \times(-5) & =-6 \\
4-10 & =-6 \\
-6 & =-6
\end{aligned}
$$

The last statement is true, so our line does pass through the point $(-5,-4)$.
(10) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
70 & =10 y, \text { so } \\
-10 y & =-70 \\
y & =7
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=0$.
The original line is horizontal (its gradient is equal to 0), so the new line is vertical and has an equation of the form $x=c$. The point $(-1,-7)$ lies on the new line, so the equation of the new line is $\quad x=-1$.
(11) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
4 y & =32, \text { so } \\
y & =8
\end{aligned}
$$

Hence, the gradient of the original line is $m=0$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $\quad y=c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-5,4)$ into this equation to get the value for c.
$4=c$.
Hence the equation of the line is $\quad y=4$.
(12) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the line perpendicular to it will be horizontal with equation of the form $y=c$, where c is a constant.
The point $(-1,-3)$ lies on the new line, so the equation of the new line is $y=-3$.
(13) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the new line is vertical and has the form $x=c$, where c is a constant.
The point $(-7,-9)$ lies on the new line, so the equation of the new line is $\quad x=-7$.
3. (1) Let $\left(x_{1}, y_{1}\right)=(-5,2)$ and $\left(x_{2}, y_{2}\right)=(0,-7)$. Then $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$, so $d=\sqrt{(-5-0)^{2}+(2-(-7))^{2}}=\sqrt{(-5)^{2}+9^{2}}=\sqrt{25+81}=\sqrt{106}$.
Hence $d=\sqrt{106}$
(2) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
-1 & =2 y+2 x, \quad \text { so } \\
-2 y & =2 x+1 \\
y & =-x-\frac{1}{2}
\end{aligned}
$$

Hence the gradient is $m=-1$ and the y-intercept is $c=-\frac{1}{2}$.
(3) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
-y-7-3 x & =3 y+9 x-8, \text { so } \\
-y-3 y & =9 x+3 x-8+7 \\
-4 y & =12 x-1 \\
y & =-3 x+\frac{1}{4}
\end{aligned}
$$

Hence the gradient is $m=-3$ and the y-intercept is $c=\frac{1}{4}$.
(4) Thus the equation of the line is $y=-4 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(6,4)$ into this equation to get the value for c. Hence $4=-4 \times 6+c$, so $28=c$.
Hence the equation of the line is $y=-4 x+28$.
(5) Let $\left(x_{1}, y_{1}\right)=(-5,-8)$ and $\left(x_{2}, y_{2}\right)=(-5,-3)$. To find the equation of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ you must find the gradient m and the y-intercept c.
Then $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-(-8)}{-5-(-5)}=\frac{5}{0}$.
Therefore this line has an infinite gradient, and is parallel to the y-axis. It's equation is of the form $x=k$, where k is a constant.
Hence the equation of the line is $x=-5$.
(6) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-36+18 x & =-6 y, \text { so } \\
6 y & =-18 x+36 \\
y & =-3 x+6
\end{aligned}
$$

Hence, the gradient of the original line is $m=-3$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $y=-3 x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(4,-21)$ into this equation to get the value for c.
$-21=-3 \times 4+c$, so $-21=-12+c$. Hence $c=-21-(-12)=-9$.
Hence the equation of the line is $\quad y=-3 x-9$.
(7) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
2 y+2+4 x & =y-7+x, \text { so } \\
2 y-y & =x-4 x-7-2 \\
y & =-3 x-9
\end{aligned}
$$

Hence, the gradient of the original line is $m=-3$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation
of the line is $\quad y=-3 x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-9,37)$ into this equation to get the value for c.
$37=-3 \times(-9)+c$, so $37=27+c$. Hence $c=37-27=10$.
Hence the equation of the line is $\quad y=-3 x+10$.
(8) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-36-12 x & =-4 y, \text { so } \\
4 y & =12 x+36 \\
y & =3 x+9
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=3$.
The new line is perpendicular to the original line, so the new line has gradient $m=-\frac{1}{m_{0}}$. Hence $m=-\frac{1}{3}$.
Thus the equation of the line is $\quad y=-\frac{1}{3} x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=$ $(30,-5)$ into this equation to get the value of c :
$-5=-\frac{1}{3} \times 30+c$, so $-5=-10+c$. Hence $c=-5-(-10)=5$.
Hence the equation of the line is $\quad y=-\frac{1}{3} x+5$.
(9) To determine whether the given line passes through the point $\left(x_{1}, y_{1}\right)=(-7,-6)$, we need to substitute the coordinates of the point into the equation of the line. Now,

$$
\begin{aligned}
& 0=-y+7-7 x, \text { so } \\
& 0=6+7-7 \times(-7) \\
& 0=6+7+49 \\
& 0=62
\end{aligned}
$$

The last statement is not true, so our line does not pass through the point $(-7,-6)$.
(10) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-8 & =-4 y, \text { so } \\
4 y & =8 \\
y & =2
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=0$.
The original line is horizontal (its gradient is equal to 0), so the new line is vertical and has an equation of the form $x=c$. The point $(7,2)$ lies on the new line, so the equation of the new line is $\quad x=7$.
(11) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
0 & =10 y-60, \text { so } \\
-10 y & =-60 \\
y & =6
\end{aligned}
$$

Hence, the gradient of the original line is $m=0$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $\quad y=c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-2,4)$ into this equation to get the value for c.
$4=c$.
Hence the equation of the line is $\quad y=4$.
(12) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the line perpendicular to it will be horizontal with equation of the form $y=c$, where c is a constant.
The point $(9,-9)$ lies on the new line, so the equation of the new line is $y=-9$.
(13) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the new line is vertical and has the form $x=c$, where c is a constant.
The point $(4,9)$ lies on the new line, so the equation of the new line is $x=4$.
4. (1) Let $\left(x_{1}, y_{1}\right)=(-5,7)$ and $\left(x_{2}, y_{2}\right)=(-5,-6)$. Then $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$, so
$d=\sqrt{(-5-(-5))^{2}+(7-(-6))^{2}}=\sqrt{0^{2}+13^{2}}=\sqrt{0+169}=\sqrt{169}$.
Hence $d=13$
(2) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
4 y & =2 x-7, \quad \text { so } \\
y & =\frac{1}{2} x-\frac{7}{4}
\end{aligned}
$$

Hence the gradient is $m=\frac{1}{2}$ and the y-intercept is $c=-\frac{7}{4}$.
(3) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
-7 y-x+7 & =-6 y+1+6 x, \text { so } \\
-7 y+6 y & =6 x+x+1-7 \\
-y & =7 x-6 \\
y & =-7 x+6
\end{aligned}
$$

Hence the gradient is $m=-7$ and the y-intercept is $c=6$.
(4) Thus the equation of the line is $y=-1 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=$ $(-4,-3)$ into this equation to get the value for c. Hence $-3=-1 \times(-4)+c$, so $-7=c$.
Hence the equation of the line is $y=-x-7$.
(5) Let $\left(x_{1}, y_{1}\right)=(3,-7)$ and $\left(x_{2}, y_{2}\right)=(0,-4)$. To find the equation of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ you must find the gradient m and the y-intercept c.
Then $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-(-7)}{0-3}=\frac{3}{-3}$. Hence $m=-1$.
Thus the equation of the line is $y=-x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(3,-7)$ into this equation to get the value for c.
Hence $-7=-1 \times 3+c$, so $-7=-3+c$. Hence $c=-7-(-3)=-4$.
Hence the equation of the line is $y=-x-4$.
(6) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
10 y+40 x & =0, \text { so } \\
10 y & =-40 x \\
y & =-4 x
\end{aligned}
$$

Hence, the gradient of the original line is $m=-4$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $\quad y=-4 x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(3,-21)$ into this equation to get the value for c.
$-21=-4 \times 3+c$, so $-21=-12+c$. Hence $c=-21-(-12)=-9$.
Hence the equation of the line is $\quad y=-4 x-9$.
(7) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
4 x-7 y+1 & =37-y-20 x, \text { so } \\
-7 y+y & =-20 x-4 x+37-1 \\
-6 y & =-24 x+36 \\
y & =4 x-6
\end{aligned}
$$

Hence, the gradient of the original line is $m=4$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $y=4 x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-4,-17)$ into this equation to get the value for c.
$-17=4 \times(-4)+c$, so $-17=-16+c$. Hence $c=-17-(-16)=-1$.
Hence the equation of the line is $\quad y=4 x-1$.
(8) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-49 & =21 x-7 y, \text { so } \\
7 y & =21 x+49 \\
y & =3 x+7
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=3$.
The new line is perpendicular to the original line, so the new line has gradient $m=-\frac{1}{m_{0}}$. Hence $m=-\frac{1}{3}$.
Thus the equation of the line is $\quad y=-\frac{1}{3} x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=$ $(9,-2)$ into this equation to get the value of c :
$-2=-\frac{1}{3} \times 9+c$, so $-2=-3+c$. Hence $c=-2-(-3)=1$.
Hence the equation of the line is $\quad y=-\frac{1}{3} x+1$.
(9) To determine whether the given line passes through the point $\left(x_{1}, y_{1}\right)=(6,57)$, we need to substitute the coordinates of the point into the equation of the line. Now,

$$
\begin{aligned}
60 x-18 & =6 y, \text { so } \\
60 \times 6-18 & =6 \times 57 \\
360-18 & =342 \\
342 & =342
\end{aligned}
$$

The last statement is true, so our line does pass through the point $(6,57)$.
(10) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
4 y & =-12, \text { so } \\
y & =-3
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=0$.
The original line is horizontal (its gradient is equal to 0), so the new line is vertical and has an equation of the form $x=c$. The point $(-4,-3)$ lies on the new line, so the equation of the new line is $\quad x=-4$.
(11) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-5 y & =0, \text { so } \\
y & =0
\end{aligned}
$$

Hence, the gradient of the original line is $m=0$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $\quad y=c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(3,10)$ into this equation to get the value for c.
$10=c$.
Hence the equation of the line is $\quad y=10$.
(12) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the line perpendicular to it will be horizontal with equation of the form $y=c$, where c is a constant.
The point $(-7,6)$ lies on the new line, so the equation of the new line is $\quad y=6$.
(13) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the new line is vertical and has the form $x=c$, where c is a constant.
The point $(-2,2)$ lies on the new line, so the equation of the new line is $x=-2$.
5. (1) Let $\left(x_{1}, y_{1}\right)=(3,1)$ and $\left(x_{2}, y_{2}\right)=(5,7)$. Then $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$, so
$d=\sqrt{(3-5)^{2}+(1-7)^{2}}=\sqrt{(-2)^{2}+(-6)^{2}}=\sqrt{4+36}=\sqrt{40}$.
Hence $d=2 \sqrt{10}$
(2) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
-9-5 y & =-6 x, \quad \text { so } \\
-5 y & =-6 x+9 \\
y & =\frac{6}{5} x-\frac{9}{5}
\end{aligned}
$$

Hence the gradient is $m=\frac{6}{5}$ and the y-intercept is $c=-\frac{9}{5}$.
(3) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
4-5 y-8 x & =y+7 x+3, \text { so } \\
-5 y-y & =7 x+8 x+3-4 \\
-6 y & =15 x-1 \\
y & =-\frac{5}{2} x+\frac{1}{6}
\end{aligned}
$$

Hence the gradient is $m=-\frac{5}{2}$ and the y-intercept is $c=\frac{1}{6}$.
(4) Thus the equation of the line is $y=5 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(9,-1)$ into this equation to get the value for c. Hence $-1=5 \times 9+c$, so $-46=c$.
Hence the equation of the line is $y=5 x-46$.
(5) Let $\left(x_{1}, y_{1}\right)=(1,9)$ and $\left(x_{2}, y_{2}\right)=(-7,-3)$. To find the equation of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ you must find the gradient m and the y-intercept c.
Then $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-9}{-7-1}=\frac{-12}{-8}$. Hence $m=\frac{3}{2}$.
Thus the equation of the line is $y=\frac{3}{2} x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(1,9)$ into this equation to get the value for c.
Hence $9=\frac{3}{2} \times 1+c$, so $9=\frac{3}{2}+c$. Hence $c=9-\frac{3}{2}=\frac{15}{2}$.
Hence the equation of the line is $y=\frac{3}{2} x+\frac{15}{2}$.
(6) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-5 y-5 & =-10 x, \text { so } \\
-5 y & =-10 x+5 \\
y & =2 x-1
\end{aligned}
$$

Hence, the gradient of the original line is $m=2$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $y=2 x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-7,-18)$ into this equation to get the value for c.
$-18=2 \times(-7)+c$, so $-18=-14+c$. Hence $c=-18-(-14)=-4$.
Hence the equation of the line is $\quad y=2 x-4$.
(7) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
6 y+7 x+1 & =-3 y+16 x+37, \text { so } \\
6 y+3 y & =16 x-7 x+37-1 \\
9 y & =9 x+36 \\
y & =x+4
\end{aligned}
$$

Hence, the gradient of the original line is $m=1$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $y=x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-7,-12)$ into this equation to get the value for c.
$-12=1 \times(-7)+c$, so $-12=-7+c$. Hence $c=-12-(-7)=-5$.
Hence the equation of the line is $\quad y=x-5$.
(8) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-32+16 x & =4 y, \text { so } \\
-4 y & =-16 x+32 \\
y & =4 x-8
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=4$.
The new line is perpendicular to the original line, so the new line has gradient $m=-\frac{1}{m_{0}}$. Hence $m=-\frac{1}{4}$.
Thus the equation of the line is $y=-\frac{1}{4} x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=$ $(28,-4)$ into this equation to get the value of c :
$-4=-\frac{1}{4} \times 28+c$, so $-4=-7+c$. Hence $c=-4-(-7)=3$.
Hence the equation of the line is $\quad y=-\frac{1}{4} x+3$.
(9) To determine whether the given line passes through the point $\left(x_{1}, y_{1}\right)=(-7,-40)$, we need to substitute the coordinates of the point into the equation of the line. Now,

$$
\begin{aligned}
6 y & =-30+30 x, \text { so } \\
6 \times(-40) & =-30+30 \times(-7) \\
-240 & =-30-210 \\
-240 & =-240
\end{aligned}
$$

The last statement is true, so our line does pass through the point $(-7,-40)$.
(10) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-18+2 y & =0, \text { so } \\
2 y & =18 \\
y & =9
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=0$.
The original line is horizontal (its gradient is equal to 0), so the new line is vertical and has an equation of the form $x=c$. The point $(-9,10)$ lies on the new line, so the equation of the new line is $\quad x=-9$.
(11) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
4 y & =-4, \text { so } \\
y & =-1
\end{aligned}
$$

Hence, the gradient of the original line is $m=0$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation
of the line is $\quad y=c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(5,8)$ into this equation to get the value for c.
$8=c$.
Hence the equation of the line is $\quad y=8$.
(12) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the line perpendicular to it will be horizontal with equation of the form $y=c$, where c is a constant.
The point $(9,1)$ lies on the new line, so the equation of the new line is $y=1$.
(13) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the new line is vertical and has the form $x=c$, where c is a constant.
The point $(8,4)$ lies on the new line, so the equation of the new line is $\quad x=8$.

