1. (1) Let P be the final population in millions. Then

$$
\begin{aligned}
P & =400 e^{0.08 \times 7} \\
& =400 e^{0.56} \\
& \approx 700.27
\end{aligned}
$$

Hence the final population is approximately 700.27 million bacteria.
(2) Let A be the final amount of the material remaining. Then

$$
\begin{aligned}
A & =100 e^{-0.05 \times 20} \\
& =100 e^{-1} \\
& \approx 36.79
\end{aligned}
$$

Hence the amount of material remaining after 20 thousand years is approximately 36.79 units.
(3) Let B be the amount of the bill, I be the amount he needs to invest, r be the interest rate and t be the number of years. Then $B=I e^{r t}$ so $I=\frac{B}{e^{r t}}$, so $I=B e^{-r t}$. Then

$$
\begin{aligned}
I & =900 e^{-0.04 \times 5} \\
& =900 e^{-0.2} \\
& \approx 736.86
\end{aligned}
$$

Hence he needs to invest approximately $\$ 736.86$.
(4) Let F be the final account balance. Then

$$
\begin{aligned}
F & =400 e^{0.05 \times 12} \\
& =400 e^{0.6} \\
& \approx 728.85
\end{aligned}
$$

Hence the final account balance is approximately $\$ 728.85$.
(5) Let F be the final amount he needs, I be the amount he has to invest, r be the interest rate and t be the number of years. Then $F=I e^{r t}$ so $e^{r t}=\frac{F}{I}$, so $r t=\ln \frac{F}{I}$, and $t=\left(\ln \frac{F}{I}\right) \div r$. Then

$$
\begin{aligned}
t & =\left(\ln \frac{1710}{900}\right) \div 0.01 \\
& =(\ln 1.90) \div 0.01 \\
& \approx 0.64 \div 0.01 \\
& \approx 64.19
\end{aligned}
$$

Hence he needs to invest $\$ 900$ for approximately 64.19 years. Therefore Damien can marry Celeste when he is about 79 years old.
(6) Let B be the price of the shoes, I be the amount Peter needs to invest, n be the number of compounding periods before the Congress, r be the interest compounding monthly. Then
$r=1 \times \frac{8.0}{12}=0.67$ percent $=0.0067$, and
$n=5 \div 1=5$
$B=I(1+r)^{n}$, so $I=\frac{B}{(1+r)^{n}}$. Therefore

$$
\begin{aligned}
I & =\frac{100}{(1+0.0067)^{5}} \\
& =\frac{100}{1.0338} \\
& \approx 96.73
\end{aligned}
$$

Hence he needs to invest approximately $\$ 96.73$.
2. (1) Let P be the final population in millions. Then

$$
\begin{aligned}
P & =600 e^{0.07 \times 9} \\
& =600 e^{0.63} \\
& \approx 1126.57
\end{aligned}
$$

Hence the final population is approximately 1126.57 million bacteria.
(2) Let A be the final amount of the material remaining. Then

$$
\begin{aligned}
A & =600 e^{-0.04 \times 13} \\
& =600 e^{-0.52} \\
& \approx 356.71
\end{aligned}
$$

Hence the amount of material remaining after 13 thousand years is approximately 356.71 units.
(3) Let B be the amount of the bill, I be the amount he needs to invest, r be the interest rate and t be the number of years. Then $B=I e^{r t}$ so $I=\frac{B}{e^{r t}}$, so $I=B e^{-r t}$. Then

$$
\begin{aligned}
I & =500 e^{-0.03 \times 7} \\
& =500 e^{-0.21} \\
& \approx 405.29
\end{aligned}
$$

Hence he needs to invest approximately $\$ 405.29$.
(4) Let F be the final account balance. Then

$$
\begin{aligned}
F & =100 e^{0.02 \times 17} \\
& =100 e^{0.34} \\
& \approx 140.49
\end{aligned}
$$

Hence the final account balance is approximately $\$ 140.49$.
(5) Let F be the final amount he needs, I be the amount he has to invest, r be the interest rate and t be the number of years. Then $F=I e^{r t}$ so $e^{r t}=\frac{F}{I}$, so $r t=\ln \frac{F}{I}$, and $t=\left(\ln \frac{F}{I}\right) \div r$. Then

$$
\begin{aligned}
t & =\left(\ln \frac{2160}{800}\right) \div 0.06 \\
& =(\ln 2.70) \div 0.06 \\
& \approx 0.99 \div 0.06 \\
& \approx 16.55
\end{aligned}
$$

Hence he needs to invest $\$ 800$ for approximately 16.55 years. Therefore Damien can marry Celeste when he is about 30 years old.
(6) Let B be the price of the shoes, I be the amount Peter needs to invest, n be the number of compounding periods before the Congress, r be the interest compounding monthly. Then
$r=1 \times \frac{3.0}{12}=0.25$ percent $=0.0025$, and
$n=23 \div 1=23$
$B=I(1+r)^{n}$, so $I=\frac{B}{(1+r)^{n}}$. Therefore

$$
\begin{aligned}
I & =\frac{400}{(1+0.0025)^{23}} \\
& =\frac{400}{1.0591} \\
& \approx 377.68
\end{aligned}
$$

Hence he needs to invest approximately $\$ 377.68$.
3. (1) Let P be the final population in millions. Then

$$
\begin{aligned}
P & =900 e^{0.04 \times 11} \\
& =900 e^{0.44} \\
& \approx 1397.44
\end{aligned}
$$

Hence the final population is approximately 1397.44 million bacteria.
(2) Let A be the final amount of the material remaining. Then

$$
\begin{aligned}
A & =800 e^{-0.09 \times 9} \\
& =800 e^{-0.81} \\
& \approx 355.89
\end{aligned}
$$

Hence the amount of material remaining after 9 thousand years is approximately 355.89 units.
(3) Let B be the amount of the bill, I be the amount he needs to invest, r be the interest rate and t be the number of years. Then $B=I e^{r t}$ so $I=\frac{B}{e^{r t}}$, so $I=B e^{-r t}$. Then

$$
\begin{aligned}
I & =1000 e^{-0.06 \times 13} \\
& =1000 e^{-0.78} \\
& \approx 458.41
\end{aligned}
$$

Hence he needs to invest approximately $\$ 458.41$.
(4) Let F be the final account balance. Then

$$
\begin{aligned}
F & =200 e^{0.01 \times 10} \\
& =200 e^{0.1} \\
& \approx 221.03
\end{aligned}
$$

Hence the final account balance is approximately $\$ 221.03$.
(5) Let F be the final amount he needs, I be the amount he has to invest, r be the interest rate and t be the number of years. Then $F=I e^{r t}$ so $e^{r t}=\frac{F}{I}$, so $r t=\ln \frac{F}{I}$, and $t=\left(\ln \frac{F}{I}\right) \div r$. Then

$$
\begin{aligned}
t & =\left(\ln \frac{720}{300}\right) \div 0.05 \\
& =(\ln 2.40) \div 0.05 \\
& \approx 0.88 \div 0.05 \\
& \approx 17.51
\end{aligned}
$$

Hence he needs to invest $\$ 300$ for approximately 17.51 years. Therefore Damien can marry Celeste when he is about 35 years old.
(6) Let B be the price of the shoes, I be the amount Peter needs to invest, n be the number of compounding periods before the Congress, r be the interest compounding monthly. Then
$r=1 \times \frac{3.0}{12}=0.25$ percent $=0.0025$, and
$n=10 \div 1=10$
$B=I(1+r)^{n}$, so $I=\frac{B}{(1+r)^{n}}$. Therefore

$$
\begin{aligned}
I & =\frac{100}{(1+0.0025)^{10}} \\
& =\frac{100}{1.0253} \\
& \approx 97.53
\end{aligned}
$$

Hence he needs to invest approximately $\$ 97.53$.
4. (1) Let P be the final population in millions. Then

$$
\begin{aligned}
P & =800 e^{0.06 \times 14} \\
& =800 e^{0.84} \\
& \approx 1853.09
\end{aligned}
$$

Hence the final population is approximately 1853.09 million bacteria.
(2) Let A be the final amount of the material remaining. Then

$$
\begin{aligned}
A & =1000 e^{-0.04 \times 16} \\
& =1000 e^{-0.64} \\
& \approx 527.29
\end{aligned}
$$

Hence the amount of material remaining after 16 thousand years is approximately 527.29 units.
(3) Let B be the amount of the bill, I be the amount he needs to invest, r be the interest rate and t be the number of years. Then $B=I e^{r t}$ so $I=\frac{B}{e^{r t}}$, so $I=B e^{-r t}$. Then

$$
\begin{aligned}
I & =400 e^{-0.07 \times 10} \\
& =400 e^{-0.7} \\
& \approx 198.63
\end{aligned}
$$

Hence he needs to invest approximately $\$ 198.63$.
(4) Let F be the final account balance. Then

$$
\begin{aligned}
F & =900 e^{0.09 \times 14} \\
& =900 e^{1.26} \\
& \approx 3172.88
\end{aligned}
$$

Hence the final account balance is approximately $\$ 3172.88$.
(5) Let F be the final amount he needs, I be the amount he has to invest, r be the interest rate and t be the number of years. Then $F=I e^{r t}$ so $e^{r t}=\frac{F}{I}$, so $r t=\ln \frac{F}{I}$, and $t=\left(\ln \frac{F}{I}\right) \div r$. Then

$$
\begin{aligned}
t & =\left(\ln \frac{1190}{700}\right) \div 0.10 \\
& =(\ln 1.70) \div 0.10 \\
& \approx 0.53 \div 0.10 \\
& \approx 5.31
\end{aligned}
$$

Hence he needs to invest $\$ 700$ for approximately 5.31 years. Therefore Damien can marry Celeste when he is about 24 years old.
(6) Let B be the price of the shoes, I be the amount Peter needs to invest, n be the number of compounding periods before the Congress, r be the interest compounding quarterly. Then
$r=3 \times \frac{9.0}{12}=2.25$ percent $=0.0225$, and
$n=21 \div 3=7$
$B=I(1+r)^{n}$, so $I=\frac{B}{(1+r)^{n}}$. Therefore

$$
\begin{aligned}
I & =\frac{300}{(1+0.0225)^{7}} \\
& =\frac{300}{1.1685} \\
& \approx 256.73
\end{aligned}
$$

Hence he needs to invest approximately $\$ 256.73$.
5. (1) Let P be the final population in millions. Then

$$
\begin{aligned}
P & =1000 e^{0.05 \times 16} \\
& =1000 e^{0.8} \\
& \approx 2225.54
\end{aligned}
$$

Hence the final population is approximately 2225.54 million bacteria.
(2) Let A be the final amount of the material remaining. Then

$$
\begin{aligned}
A & =300 e^{-0.05 \times 10} \\
& =300 e^{-0.5} \\
& \approx 181.96
\end{aligned}
$$

Hence the amount of material remaining after 10 thousand years is approximately 181.96 units.
(3) Let B be the amount of the bill, I be the amount he needs to invest, r be the interest rate and t be the number of years. Then $B=I e^{r t}$ so $I=\frac{B}{e^{r t}}$, so $I=B e^{-r t}$. Then

$$
\begin{aligned}
I & =200 e^{-0.01 \times 3} \\
& =200 e^{-0.03} \\
& \approx 194.09
\end{aligned}
$$

Hence he needs to invest approximately $\$ 194.09$.
(4) Let F be the final account balance. Then

$$
\begin{aligned}
F & =900 e^{0.09 \times 9} \\
& =900 e^{0.81} \\
& \approx 2023.12
\end{aligned}
$$

Hence the final account balance is approximately $\$ 2023.12$.
(5) Let F be the final amount he needs, I be the amount he has to invest, r be the interest rate and t be the number of years. Then $F=I e^{r t}$ so $e^{r t}=\frac{F}{I}$, so $r t=\ln \frac{F}{I}$, and $t=\left(\ln \frac{F}{I}\right) \div r$. Then

$$
\begin{aligned}
t & =\left(\ln \frac{920}{400}\right) \div 0.02 \\
& =(\ln 2.30) \div 0.02 \\
& \approx 0.83 \div 0.02 \\
& \approx 41.65
\end{aligned}
$$

Hence he needs to invest $\$ 400$ for approximately 41.65 years. Therefore Damien can marry Celeste when he is about 52 years old.
(6) Let B be the price of the shoes, I be the amount Peter needs to invest, n be the number of compounding periods before the Congress, r be the interest compounding monthly. Then
$r=1 \times \frac{5.0}{12}=0.42$ percent $=0.0042$, and
$n=20 \div 1=20$
$B=I(1+r)^{n}$, so $I=\frac{B}{(1+r)^{n}}$. Therefore

$$
\begin{aligned}
I & =\frac{400}{(1+0.0042)^{20}} \\
& =\frac{400}{1.0867} \\
& \approx 368.08
\end{aligned}
$$

Hence he needs to invest approximately $\$ 368.08$.

