2.5 Intervals on the real line

- On Page 12 we briefly encountered number lines (or *real* lines) and order (such as 'less than', written <).
- Any real number can be marked as a **single point** on the real line.
- Intervals or regions can also be marked on the real line. An interval includes all real numbers which lie between two endpoints.
- Such intervals can be described by inequalities, using the signs: < \leq > \geq

Example 2.5.1 On the real line, mark the interval corresponding to $x \ge 0$ and $x \le 2$.

We have highlighted the region between x = 0 and x = 2, with a solid black circle at each end point, and a (curved) line between the end points. This is used to denote **every point** between 0 and 2 (inclusive).

Example 2.5.2 On the real line, mark the interval corresponding to x > -1 and x < 2.

Now we have used a non-filled circle at each end point. This is used to denote **every point** between -1 and 2, but **not** including -1 and 2.

- Make sure you understand the difference between \leq and <, and between \geq and >
 - For \leq and \geq the endpoint occurs **inside** the interval, and is marked with a solid circle.
 - For < and > the endpoint occurs **outside** the interval, and is marked with a non-filled circle.
- Some intervals only have one endpoint (e.g. x > 4).
- This means that the interval goes on forever in one direction. If it goes to the right then we say it goes to infinity, written ∞ . If it goes to the left, we say it goes to negative infinity, written $-\infty$.
- This is marked on a real line by an arrow pointing in the correct direction.

Example 2.5.3 On a real line, mark the region x > 0.

Question 2.5.4 Mark each of the following intervals on the real line:

$$(1) x \le 2$$

(2) $-2 \le x \le 2$ (This means $-2 \le x$ and $x \le 2$.)

- There is an easy way to write intervals:
 - [a, b] denotes the interval $a \le x \le b$
 - [a,b) denotes the interval $a \le x < b$
 - (a, b] denotes the interval $a < x \le b$
 - (a,b) denotes the interval a < x < b
- a and b are called the **endpoints** of the interval. Note that a (the first endpoint) is **always less than or equal to** b.
- Note the brackets: they indicate the type of interval.
 - A square bracket means the corresponding endpoint falls
 inside the interval. On the real line, the endpoint is
 marked with a solid circle.
 - A round bracket means the corresponding endpoint falls **outside** the interval. On the real line, the endpoint is marked with a non-filled circle. (Note that $-\infty$ and ∞ always have a round bracket, not a square bracket.)
- Be clear on what happens when an endpoint is **outside** an interval, e.g. x > 0. The point x = 0 is not in the interval, but every value greater than 0 is in the interval. So 0.5, 0.01, 0.000001 and 0.00000001 are all in the interval.

Question 2.5.5 Write each of the following intervals using inequality signs, and then mark each one on a real line:

$$(1) \qquad (-\infty, 0)$$

$$(2)$$
 $[0,5)$

$$(3) \qquad (0,5]$$

2.6 Solving inequalities

- We know how to solve equations with an "=" sign.
- The key rule was: whatever you do to one side, you must also do to the other side.
- We can also solve *inequalities*, which look like equations but instead have signs like < or \ge .
- There are two major differences between equations and inequalities:
 - the answer to most inequalities is an **interval**, not a single point; and
 - the rules for manipulating inequalities are a bit different to those for solving equations.

Rules for solving inequalities.

- 1. The same quantity can be added to, or subtracted from, both sides of the inequality.
- 2. Both sides of the inequality can be multiplied by, or divided by, the same **positive** quantity.
- 3.) If both sides are multiplied by, or divided by, the same negative quantity, then the inequality must be reversed (that is, < becomes >, > becomes <, and so on).
- 4. If a < b then b > a; if a > b then b < a. If $a \le b$ then $b \ge a$; if $a \ge b$ then $b \le a$.
- Rules 1 and 2 are the same as for solving equations.
- Pay particular attention to Rules 3 and 4: the inequality sign must be **reversed** when applying these rules!

2.7 Square roots

- We have previously seen square roots, written with a $\sqrt{\ }$ sign. If a is a real number then we know that:
 - 1. \sqrt{a} is only defined if $a \ge 0$
 - $2. \ \sqrt{a} \times \sqrt{a} = a$
 - 3. if a > 0 then a has two square roots, one positive and one negative.
- To avoid confusion, \sqrt{a} is usually taken to mean the positive square root of a.
- To get the negative square root, write $-\sqrt{a}$.

The following rules allow us to simplify square roots.

Important properties of square roots.

If a and b are real numbers with $a \ge 0$ and $b \ge 0$, then

$$(1) \sqrt{a} \times \sqrt{b} = \sqrt{a \times b} = \sqrt{ab}$$

$$(2) \qquad \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

Example 2.7.1

1.
$$\sqrt{4} \times \sqrt{4} = \sqrt{4 \times 4} = \sqrt{16} = 4$$
 and $\sqrt{7} \times \sqrt{7} = 7$

2.
$$\sqrt{5} \times \sqrt{20} = \sqrt{5 \times 20} = \sqrt{100} = 10$$

$$3. \sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$$

4.
$$-\sqrt{16} = -4$$

Example 2.6.1 Solve the inequality $-3x + 2 \le 6 - x$. -3x + 2 < 6 - x $-3x + 2 + x \le 6 - x + x \qquad 2 \le 6$ SO -2x+2-2 < 6-2SO $-2x \div -2 \ge 4 \div -2 \text{ (the inequality is reversed)}$ $x \ge -2$ SO SO $[-2,\infty)$ SO

Question 2.6.2 Find all x which satisfy 2x-4 > x+3. Write your answer in interval format and mark it on the real line.

$$2x-47x+3$$

$$x-473$$

$$x77$$

$$(7,0)$$

Question 2.6.3 Find all x which satisfy $-2x \le x + 3$. Write your answer in interval format and mark it on the real line.

$$-2x \le x + 3$$
 or $-3x \le 3$
 $0 \le 3x + 3$
 $-3 \le 3x$
 $x > 7 - 1$
 $(-1, \infty)$

Question 2.6.4 Find all y which satisfy 3(y+2) < 3y+4. Section 2.6

Question 2.7.2 Simplify
$$\frac{\sqrt{8}\times\sqrt{6}}{\sqrt{16}} = \frac{\sqrt{8}\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{9}\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{9}\sqrt{6}}{\sqrt{6}} = \frac{\sqrt{9}\sqrt{6}}{\sqrt{6}}$$

- There are some common errors with square roots.
- Pay attention to the following facts; they each say that the two quantities are not equal.

Non-properties of square roots.

J9+J2 + J11

(1)
$$\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$$

(2) $\sqrt{a} - \sqrt{b} \neq \sqrt{a-b}$

$$(2) \sqrt{a} - \sqrt{b} \neq \sqrt{a-b}$$

Example 2.7.3 Make sure you understand that:

$$\sqrt{2x} \times \sqrt{3y} = \sqrt{6xy}$$

but you cannot simplify:

$$\sqrt{2x} + \sqrt{3y}$$

Question 2.7.4 By letting a = 9 and b = 16, show that it is not true that $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$.

CHS = RHS

Surds

• Some square roots can be written exactly as fractions; that is, they are **rational numbers**.

Example 2.7.5 The following square roots are rational:

$$\sqrt{4} = 2 = \frac{2}{1}$$

$$\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$$

- Many square roots **cannot** be written exactly as fractions; that is, they are **irrational numbers**.
- For example, $\sqrt{2}$, $\sqrt{5}$, $\sqrt{7}$ are all irrational, and there is no way of writing them more simply.
- Irrational square roots are called surds.
- Sometimes, a surd can be written in a simpler form, by using the properties of square roots. In particular:

(1)
$$\sqrt{a^2} = a \text{ (for example, } \sqrt{16} = \sqrt{4^2} = 4) \text{ and }$$

(2)
$$\sqrt{a \times a} = a$$
 (for example, $\sqrt{2 \times 2} = 2$).

• These rules let us 'take things outside' the square root.

Simplifying square roots

Given a square root, we usually write it in simplest form by trying to 'take something outside' the square root sign. This is done via the following process:

- Factor the number inside the square root sign, looking for
 - factors that are square numbers (e.g. 4, 9, 16, ...); or
 - pairs of identical factors (if you don't easily find a square factor).
- Use rules (1) and (2) above to simplify.

Example 2.7.6 Write
$$\sqrt{12}$$
 in simplest form. $\sqrt{q} = 3$

Notice that 4 is a square number and that $12 = 4 \times 3$. So:

$$\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2 \times \sqrt{3} = 2\sqrt{3}$$

Alternatively,

$$\sqrt{12} = \sqrt{2} \times 0 = \sqrt{2} \times 2 \times 3 = \sqrt{2 \times 2} \times \sqrt{3} = 2 \times \sqrt{3} = 2\sqrt{3}$$

Question 2.7.7 Simplify
$$\sqrt{20}$$
.

$$\int 20 = \int 4x5 = \int 10 \text{ m}$$

$$= \int 4x\sqrt{5} = \int 5x\sqrt{4}$$

Arithmetic on surds

- Surds can be involved in expressions. For example, $3 + \sqrt{5}$ is an expression involving a surd.
- Mathematical operations (such as addition, multiplication and so on) can be performed on such expressions.
- Be careful to remember <u>BEDMAS</u> and the relevant properties of square roots.

Example 2.7.8
$$(\sqrt{2} + 5) + (\sqrt{2} - 6) - \sqrt{2} = \underbrace{\sqrt{2} + \sqrt{2} - \sqrt{2}}_{= \sqrt{2} - 1} + 5 - 6$$

$$= \sqrt{2} - 1$$

MATH1040, 2011. Section 2.7.

 $\frac{\text{Page } 60}{\text{x} + 4\text{x} - 6\text{x}} \quad \text{whil} \quad x = \sqrt{3}$

V3+4V3-6V3 =- V3.

Example 2.7.9
$$3\sqrt{2} \times 5\sqrt{6} + 10\sqrt{3}$$

$$= 15\sqrt{12} + 10\sqrt{3}$$

$$= 15 \times 2\sqrt{3} + 10\sqrt{3}$$

$$= 30\sqrt{3} + 10\sqrt{3}$$

$$= 40\sqrt{3}$$

Question 2.7.10 Show that
$$\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$$
.

UNS = $\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$.

= $\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$.

= $\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$.

= $\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$.

= $\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$.

= $\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$.

= $\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$.

= $\sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{18}$.

Question 2.7.11 Simplify
$$(\sqrt{8} - \sqrt{2})(\sqrt{2} + \sqrt{6})$$
.

$$= \sqrt{16} + \sqrt{4} - \sqrt{4} - \sqrt{2}$$

$$= 4 + \sqrt{16}\sqrt{3} - 2 - \sqrt{4}\sqrt{3}$$

$$= 2 + \sqrt{3} + 2\sqrt{3}$$

$$= 2 + \sqrt{3}$$

MATH1040, 2011. Section 2.7.

Page 61

2.8 Powers and Exponents

- On Page 25 we briefly encountered exponentiation.
- For example, $3^2 = 3 \times 3$.
- In the expression (3)2, 3 is called the <u>base</u> and 2 is called the power, exponent, or index.
- There are various rules that allow us to simplify operations involving powers. You must be familiar with these rules.

Power Rule 1: Product of powers

If a, m and n are real numbers, then:

$$a^m \times \underline{a}^n = a^{m+n}$$

Note that in this rule, the base must be the same in **both** places on the LHS of the equals sign and on the RHS.

Example 2.8.1

- $2^2 \times 2^3 = 2^{2+3} = 2^5 = 32$ You can see why the rule works: $2^2 \times 2^3 = (2 \times 2) \times (2 \times 2 \times 2) = 2 \times 2 \times 2 \times 2 \times 2 = 2^5$
- $y^3 \times y^2 \times y = y^{3+2+1} = y^6$
- We cannot simplify $x^3 \times y^2$ as the first base x is not the same as the second base y. The most we can do is simplify it to x^3y^2 .

Question 2.8.2 Simplify each of the following:

(a)
$$3^4 \times 3^2 \times 3^3 = 3^9$$

(b)
$$x^{9} \times x^{9} \times y^{4} \times x^{9} = 5c^{15}y^{4}$$

$$(c) \frac{2^n \times 2^3}{2} = 2^{n+3} + 2^{3n}$$

Power Rule 2: Dividing powers

If a, m, n are real numbers, with a non-zero, then:

$$a^m \div a^n = a^{m-n}$$

Just as in Rule 1, the base must be the same in both places on the LHS of the equals sign and on the RHS.

Example 2.8.3

• $3^5 \div 3^2 = 3^{5-2} = 3^3 = 27$

You can see why the rule works:
$$3^5 \div 3^2 = \frac{3 \times 3 \times 3 \times 3 \times 3}{3 \times 3} = 3 \times 3 \times 3 = 3^3$$

•
$$p^{10}
dot p^6 = p^{10-6} = p^4$$

Question 2.8.4 Simplify each of the following:

(a)
$$|7^{12} \div 7^{5}| \div 7^{3} = -7^{7} \div -7^{3} = -7^{4}$$

(b)
$$\underline{x}^4 \div \underline{x}^{-4} = 50^8 = 3^{4-7}$$

(b)
$$x^4 \div x^{-4} = 50^8 = x^{4-4}$$

(c) $3^{n+4} \div 3^{n+2} = 3^{n+4} - (n+2)$
 $-(n+2)$

MATH 1040, 2011. Section 2.8. $= -n-2$

Page 6

MATH1040, 2011. Section 2.8.

Page 63

Power Rule 3: Power equal to 0 or 1

If a is any non-zero real number then:

$$(a^0 = 1)$$
 and $a^1 = a$

Example 2.8.5

- $3^2 \div 3^2 = 1$ and $3^2 \div 3^2 = 3^{2-2} =$
- $x^4 \div x^3 = \frac{x \times x \times x \times x}{x \times x \times x} = x$ and $x^4 \div x^3 = x^{4-3} = x^1$.

So it must be that $x^1 = x$.

Question 2.8.6 Simplify each of the following:

(a)
$$(2^{52} \times (-0.14536)^5)^0 = ($$

(b)
$$x^2 \times x' \times x^3 \div x^5 = x' \div x' = x' = x'$$

(c)
$$x^2 \times x^0 + x^3 \times y^0$$

$$= x^2 + x^3 \times 1$$

$$= x^2 + x^3 \times 1$$

Power Rule 4: Negative power

Let a be any non-zero real number and m be any real number, then: $\sqrt{a^{-m} = \frac{1}{a^m}}$

Note that the expression a^{-m} has been rewritten as a fraction and the power is now 'positive' m.

Example 2.8.7

•
$$10^{-2} = \frac{1}{10^2} = \frac{1}{100}$$
.

You can see why the rule works:

$$10^{3} \div 10^{5} = \frac{\cancel{10} \times \cancel{10} \times \cancel{10}}{\cancel{10} \times \cancel{10} \times \cancel{10} \times \cancel{10} \times \cancel{10}} = \frac{1}{10 \times 10} \left(\frac{1}{10^{2}} \right)$$

But
$$10^3 \div 10^5 = 10^{3-5} = 10^{-2}$$

Hence
$$10^{-2} = \frac{1}{10^2}$$
.

•
$$x^{-3} = \frac{1}{x^3}$$
.

$$\bullet \ \frac{1}{5^{-2}} = \frac{5^2}{1} = 25.$$

Question 2.8.8 Simplify each of the following:

(a)
$$2^{-1} \times 10 = \frac{1}{2} \times 10 = \frac{1}{2} \times 10 = 5$$

(b)
$$7^{-2} \times 14 = \frac{1}{7^2} \times 14 = \frac{1}{49} \times \frac{14}{7} = \frac{149}{7} \times \frac{149}{7} \frac{149}{7} \times \frac{149}{7} \times \frac{149}{7} = \frac{149}{7} \times \frac{149}{7} \times \frac{149}{7} = \frac{149}{7} \times \frac$$

(c)
$$\frac{x^5 \times \frac{1}{x^4}}{1} = \frac{x^5}{x^4} = x^1 = x$$

$$= x^5 \times x^4 = x^1 = x^1$$

Power Rule 5: Fractional powers

Let a be a real number and m be a non-zero real number, then:

$$a^{1/m} = \sqrt[m]{a}$$

In particular, for m = 2 we have $a^{1/2} = \sqrt[2]{a} = \sqrt{a}$. (For some values of m there are restrictions on allowed values of a. For example, if m = 2 then a cannot be negative.)

MATH1040, 2011. Section 2.8.

Page 65

Example 2.8.9

• $9^{1/2} = \sqrt{9} = 3$.

You can see why the rule works:

$$9^{1/2} \times 9^{1/2} = 9^{1/2 + 1/2} = 9^1 = 9.$$

Hence $9^{1/2}$ must be $\sqrt{9}$.

Hence
$$9^{1/2}$$
 must be $\sqrt{9}$.
• $(x^{1/2})^2 = (\sqrt{x})^2 = x$. $(z\sqrt{x})^2 = x$.

•
$$7^{1/3} \times 7^{1/3} \times 7^{1/3} = 7^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 7^1 = 7$$
.

Question 2.8.10 Simplify each of the following:

$$\frac{(a) (3^2 \times 4^{1/2})^{1/2}}{= (9 \times \sqrt{4})^{4/2}} = \sqrt{9 \times 2} = \sqrt{18}$$

(b)
$$x^{-1/2} - \frac{\sqrt{x}}{x}$$

$$= \frac{1}{x^{1/2}} - \frac{x^{1/2}}{x^{1/2}} = \frac{1}{\sqrt{5c}} - x^{1/2} = \frac{1}{\sqrt{5c}}$$

Power Rule 6: Powers raised to powers

If a, b, m and n are real numbers $(b \neq 0)$ in the fraction then:

$$(ab)^n = a^{\underline{m}n} \quad (ab)^n = a^n b^n \quad \text{and} \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Example 2.8.11

•
$$(4^2)^3 = 4^{2 \times 3} = 4^6$$

You can see why the rule works:

$$(4^2)^3 = 4^2 \times 4^2 \times 4^2 = 4^{2+2+2} = 4^{2\times 3} = 4^6$$

•
$$(x^2y)^2 = x^{2\times 2}y^{1\times 2} = x^4y^2$$

MATH1040, 2011. Section 2.8