1. (a) Let $\left(x_{1}, y_{1}\right)=(10, \sqrt{3})$ and $\left(x_{2}, y_{2}\right)=(-6, \sqrt{3})$. Then $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$, so
$d=\sqrt{(10-(-6))^{2}+(\sqrt{3}-\sqrt{3})^{2}}=\sqrt{16^{2}+0^{2}}=\sqrt{256+0}=\sqrt{256}$.
Hence $d=16$
(b) First we number the equations for convenience:

$$
\begin{array}{r}
5 y-9 x=-50 \\
-40 y+72 x=404 \tag{2}
\end{array}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by 8 , giving

$$
\begin{align*}
& 40 y-72 x=-400 \tag{3}\\
& -40 y+72 x=404 \tag{4}
\end{align*}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
40 y-40 y-72 x+72 x=-400+404 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{equation*}
0=4 \tag{6}
\end{equation*}
$$

Statement (6) is never true, so there is no solution to our simultaneous equations. The lines are parallel.
(c) First we number the equations for convenience:

$$
\begin{gather*}
-12-8 y=-2 x \tag{1}\\
-5 x=-214+3 y \tag{2}
\end{gather*}
$$

We solve these using substitution. Dividing both sides of equation (1) by -2 gives

$$
\begin{equation*}
6+4 y=x \tag{3}
\end{equation*}
$$

Substituting for x in equation (2),

$$
\begin{equation*}
-5 \times(6+4 y)=-214+3 y \tag{4}
\end{equation*}
$$

Now (4) is an equation only involving y which gives:

$$
\begin{aligned}
-30-20 y & =-214+3 y \\
-23 y & =-184 \\
y & =8
\end{aligned}
$$

Next we substitute the value for y into equation (3) to obtain the value for x, giving

$$
x=6+4 \times 8=38
$$

Hence the simultaneous solution to equations (1) and (2) is $(38,8)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $-12-8 \times 8=-2 \times 38$
(2) $-5 \times 38=-214+3 \times 8$
$-12-64=-76$
$-190=-214+24$
$-76=-76$
$-190=-190$

Both equations turned into true statements, as required. Hence the answer is correct.)
(d) $f(w)=3(w+3)^{2}$

When determining the domain of this function, we need to keep in mind the following:

* there are no square roots or absolute value signs;
* we can square any number.

Hence, the domain of this function is $(-\infty, \infty)$, i.e. any value of w can be substituted into f.
(e) $f(w)=\frac{7}{w^{2}-5}$

When determining the domain of this function, we need to keep in mind the following:

* denominator of a fraction cannot be 0 , so $w^{2}-5 \neq 0$;
* so $w^{2} \neq 5$;
* we can square any number and result will always be a positive number or 0 , so $w \neq \pm \sqrt{5}$.

Hence, the domain of this function is $(-\infty,-\sqrt{5}) \cup(-\sqrt{5}, \sqrt{5}) \cup(\sqrt{5}, \infty)$, i.e. $w \neq \pm \sqrt{5}$.
(f) $f(w)=\sqrt{5|w|}$

When evaluating the range, we need to keep in mind the following (starting with variable w):

* absolute value is always positive or 0 , so $|w| \geq 0$;
* square root is always positive or 0 , so $\sqrt{5|w|} \geq 0$.

Hence, the range of this function is $[0, \infty)$.
(g) $f(x)=\frac{-11}{\sqrt{x}+1}$

When evaluating the range, we need to keep in mind the following (starting with variable x):

* square root is always positive or 0 , so $0 \leq \sqrt{x}$;
* fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0 ;
* so $1 \leq \sqrt{x}+1$.

Hence, the range of this function is $[-11,0)$.
(h) $f(w)=\frac{9}{\sqrt{|w|}}$

When determining the domain of this function, we need to keep in mind the following:

* denominator of a fraction cannot be 0 , so $\sqrt{|w|} \neq 0$;
* we can only take the square root of positive numbers or 0 , so $|w|>0$;
* we can find the absolute value of any number.

Hence, the domain of this function is $(-\infty, 0) \cup(0, \infty)$, i.e. $w \neq 0$.
When evaluating the range, we need to keep in mind the following (starting with variable w):

* absolute value is always positive or 0 , so $|w| \geq 0$;
* square root is always positive or 0 , so $\sqrt{|w|} \geq 0$;
* fraction can be 0 only if numerator is 0 , so $\frac{9}{\sqrt{|w|}}>0$.

Hence, the range of this function is $(0, \infty)$.
2. (a) The roots of $y=-2 x^{2}-8 x+10$ are the x values that satisfy $-2 x^{2}-8 x+10=0$. You can solve this equation either by using the quadratic formula or by factoring. Here we will use factoring.

First divide through by -2 to get $x^{2}+4 x-5=0$. Now because $x^{2}+4 x-5=(x+5)(x-1)$, the two roots of the quadratic equation are $x=-5,1$.
(b) The y-intercept occurs when $x=0$, so substituting this into $y=-2 x^{2}-8 x+10$ gives $y=10$.
(c)

3. $3 x^{2}+3 x-36=0$, so we use $a=3, b=3, c=-36$ in the quadratic formula. Hence

$$
\begin{aligned}
x & =\frac{-3 \pm \sqrt{3^{2}-4 \times 3 \times(-36)}}{2 \times 3} \\
& =\frac{-3 \pm \sqrt{9-(-432)}}{6} \\
& =\frac{-3 \pm \sqrt{441}}{6} \\
& =\frac{-3+21}{6} \text { or } \frac{-3-21}{6} \\
& =\frac{18}{6} \text { or } \frac{-24}{6} \\
& =3 \text { or }-4
\end{aligned}
$$

4. BONUS QUESTION

$\frac{44}{7}$ clubs.

