MATH1040/7040 ASSIGNMENT 4 SOLUTIONS

- 1. (a) Let $(x_1, y_1) = (10, \sqrt{3})$ and $(x_2, y_2) = (-6, \sqrt{3})$. Then $d = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$, so $d = \sqrt{(10 (-6))^2 + (\sqrt{3} \sqrt{3})^2} = \sqrt{16^2 + 0^2} = \sqrt{256 + 0} = \sqrt{256}$. Hence d = 16
 - (b) First we number the equations for convenience:

5y - 9x = -50 (1)-40y + 72x = 404 (2)

It's probably easier to solve these using elimination. Multiply equation (1) by 8, giving

$$40y - 72x = -400 (3) -40y + 72x = 404 (4)$$

We add both sides of equations (3) and (4), giving

$$40y - 40y - 72x + 72x = -400 + 404 \tag{5}$$

Simplifying equation (5) gives

0 = 4 (6)

Statement (6) is **never true**, so there is no solution to our simultaneous equations. The lines are parallel. (c) First we number the equations for convenience:

$$-12 - 8y = -2x (1) -5x = -214 + 3y (2)$$

We solve these using substitution. Dividing both sides of equation (1) by -2 gives

$$6 + 4y = x \tag{3}$$

Substituting for x in equation (2),

$$-5 \times (6+4y) = -214 + 3y \tag{4}$$

Now (4) is an equation only involving y which gives:

$$-30 - 20y = -214 + 3y$$

 $-23y = -184$
 $y = 8$

Next we substitute the value for y into equation (3) to obtain the value for x, giving

$$x = 6 + 4 \times 8 = 38$$

Hence the simultaneous solution to equations (1) and (2) is (38, 8).

(As good boys and girls always do, check your answers by substituting into equations (1) and (2):

(1) $-12 - 8 \times 8 = -2 \times 38$ -12 - 64 = -76 -76 = -76(2) $-5 \times 38 = -214 + 3 \times 8$ -190 = -214 + 24-190 = -190

Both equations turned into true statements, as required. Hence the answer is correct.)

(d) $f(w) = 3(w+3)^2$

When determining the domain of this function, we need to keep in mind the following:

- * there are no square roots or absolute value signs;
- $\ast\,$ we can square any number.

Hence, the domain of this function is $(-\infty,\infty)\;$, i.e. any value of w can be substituted into f .

(e)
$$f(w) = \frac{7}{w^2 - 5}$$

When determining the domain of this function, we need to keep in mind the following:

* denominator of a fraction cannot be 0, so $w^2 - 5 \neq 0$;

* so $w^2 \neq 5$;

* we can square any number and result will always be a positive number or 0, so $w \neq \pm \sqrt{5}$. Hence, the domain of this function is $(-\infty, -\sqrt{5}) \cup (-\sqrt{5}, \sqrt{5}) \cup (\sqrt{5}, \infty)$, i.e. $w \neq \pm \sqrt{5}$.

(f) $f(w) = \sqrt{5|w|}$

When evaluating the range, we need to keep in mind the following (starting with variable w):

- * absolute value is always positive or 0, so $|w| \ge 0$;
- * square root is always positive or 0, so $\sqrt{5|w|} \ge 0$.

Hence, the range of this function is $[0,\infty)$.

(g)
$$f(x) = \frac{-11}{\sqrt{x}+1}$$

When evaluating the range, we need to keep in mind the following (starting with variable x):

- * square root is always positive or 0, so $0 \le \sqrt{x}$;
- * fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0 ; * so $1 \le \sqrt{x} + 1$.

Hence, the range of this function is [-11, 0).

(h)
$$f(w) = \frac{9}{\sqrt{|w|}}$$

When determining the domain of this function, we need to keep in mind the following:

- * denominator of a fraction cannot be 0, so $\sqrt{|w|} \neq 0$;
- * we can only take the square root of positive numbers or 0, so |w| > 0;
- * we can find the absolute value of any number.

Hence, the domain of this function is $(-\infty, 0) \cup (0, \infty)$, i.e. $w \neq 0$.

When evaluating the range, we need to keep in mind the following (starting with variable w):

- * absolute value is always positive or 0, so $|w| \ge 0$;
- * square root is always positive or 0, so $\sqrt{|w|} \ge 0$;
- * fraction can be 0 only if numerator is 0, so $\frac{9}{\sqrt{|w|}} > 0$.

Hence, the range of this function is $(0, \infty)$.

2. (a) The roots of $y = -2x^2 - 8x + 10$ are the x values that satisfy $-2x^2 - 8x + 10 = 0$. You can solve this equation either by using the quadratic formula or by factoring. Here we will use factoring.

First divide through by -2 to get $x^2 + 4x - 5 = 0$. Now because $x^2 + 4x - 5 = (x + 5)(x - 1)$, the two roots of the quadratic equation are x = -5, 1.

- (b) The y-intercept occurs when x = 0, so substituting this into $y = -2x^2 8x + 10$ gives y = 10.
- (c)

3. $3x^2 + 3x - 36 = 0$, so we use a = 3, b = 3, c = -36 in the quadratic formula. Hence

$$x = \frac{-3 \pm \sqrt{3^2 - 4 \times 3 \times (-36)}}{2 \times 3}$$

= $\frac{-3 \pm \sqrt{9 - (-432)}}{6}$
= $\frac{-3 \pm \sqrt{441}}{6}$
= $\frac{-3 \pm 21}{6}$ or $\frac{-3 - 21}{6}$
= $\frac{18}{6}$ or $\frac{-24}{6}$
= 3 or -4

4. BONUS QUESTION

 $\frac{44}{7}$ clubs.