1. A few lines.
2.

(a) $|2 y+4|=4$, so

$$
\begin{array}{lll}
2 y+4=4 & \text { or } & 2 y+4=-4 \\
2 y=4-4 & & 2 y=-4-4 \\
2 y=0 & 2 y=-8
\end{array}
$$

Hence the solutions are: $y=0$ and $y=-4$
(b) $\frac{8 z^{-2} z^{-3}}{z^{-1} z^{-3}}=\frac{8 z^{-2-3}}{z^{-1-3}}=\frac{8 z^{-5}}{z^{-4}}=8 z^{-5-(-4)}=8 z^{-1}$
(c)

$$
\begin{aligned}
y^{-1} x^{0} x^{-2} x^{1} \times y^{2} \div x^{-1} & =y^{-1} x^{0} x^{-2} x^{1} \times y^{2} \times x^{1} \\
& =x^{0} x^{-2} x^{1} x^{1} y^{-1} y^{2} \\
& =x^{0-2+1+1} y^{-1+2} \\
& =x^{0} y^{1} \\
& =y
\end{aligned}
$$

(d) $\sqrt{8}=y \sqrt{2}$. Now $\sqrt{8}=\sqrt{4 \times 2}=\sqrt{2 \times 2 \times 2}=2 \sqrt{2}$. Hence $y=2$
(e)

$$
\begin{aligned}
(\sqrt{6}+\sqrt{7}) \sqrt{6} & =\sqrt{6} \times \sqrt{6}+\sqrt{6} \times \sqrt{7} \\
& =\sqrt{6 \times 6}+\sqrt{6 \times 7} \\
& =6+\sqrt{42}
\end{aligned}
$$

(f)

$$
\begin{aligned}
(\sqrt{6}+\sqrt{4})(\sqrt{6}+\sqrt{6}) & =\sqrt{6} \times \sqrt{6}+\sqrt{6} \times \sqrt{6}+\sqrt{4} \times \sqrt{6}+\sqrt{4} \times \sqrt{6} \\
& =\sqrt{6 \times 6}+\sqrt{6 \times 6}+\sqrt{4 \times 6}+\sqrt{4 \times 6} \\
& =6+6+\sqrt{24}+\sqrt{24} \\
& =6+6+2 \sqrt{6}+2 \sqrt{6} \\
& =12+4 \sqrt{6}
\end{aligned}
$$

(g) $|-33|=33$
(h) In interval form the answer is $[-3,-2.5)$ and on a real line the answer is:
(i) In inequality form the answer is $-1<x \leq 3$ and on a real line the answer is:

(j)

$$
\begin{aligned}
-2 x-3 & \leq 3 x-18 \\
-2 x-3+3 & \leq 3 x-18+3 \\
-2 x & \leq 3 x-15 \\
-2 x-3 x & \leq 3 x-3 x-15 \\
-5 x & \leq-15 \\
-5 x \div(-5) & \geq-15 \div(-5) \\
x & \geq 3
\end{aligned}
$$

In interval format the answer is $[3, \infty)$, and on a real line the answer is:

3.

- Let the middle number be n. The number one less than n would be $n-1$, and the number one more than n would be $n+1$.
If we square n we get n^{2}. When we multiply $n-1$ by $n+1$, we get $(n-1)(n+1)=n^{2}+n-n-1=n^{2}-1$
Hence the rule always works! Try it with three other consecutive numbers.

4. (a)
(i) $n=120$, so $t=\frac{120}{8}+6 \Rightarrow t=15+6 \Rightarrow t=21^{\circ} C$
(ii) $n=0$, so $t=\frac{0}{8}+6 \Rightarrow t=0+6 \Rightarrow t=6^{\circ} C$
(b) $t=30$, so $30=\frac{n}{8}+6$
$\Rightarrow 24=\frac{n}{8}$
$\Rightarrow n=192$. So, with 10 crickets in a bowl there are $10 \times 192=1920$ chirps per minute.
