1. At least six lines.
2. (a)

$$
\begin{aligned}
\left(\frac{10}{8}-\frac{-32}{-40}+\frac{-31}{40}\right) \times \frac{-32}{-48} & =\left(\frac{10 \times 5}{8 \times 5}-\frac{32}{40}+\frac{-31}{40}\right) \times \frac{-32}{-48} \\
& =\left(\frac{50-32}{40}+\frac{-31}{40}\right) \times \frac{-32}{-48} \\
& =\left(\frac{18}{40}+\frac{-31}{40}\right) \times \frac{-32}{-48} \\
& =\left(\frac{22 \times 9}{\not 2 \times 20}+\frac{-31}{40}\right) \times \frac{-32}{-48} \\
& =\left(\frac{9}{20}+\frac{-31}{40}\right) \times \frac{-32}{-48} \\
& =\left(\frac{9 \times 2}{20 \times 2}-\frac{31}{40}\right) \times \frac{-32}{-48} \\
& =\frac{18-31}{40} \times \frac{-32}{-48} \\
& =\frac{-13}{40} \times \frac{-32}{-48} \\
& =\frac{-13}{\not 2 \times 20} \times \frac{16 \times \not 2}{16 \times 3} \\
& =\frac{-13}{20} \times \frac{1}{3} \\
& =\frac{-13 \times 1}{20 \times 3} \\
& =\frac{-13}{60} \\
& =-\frac{13}{60}
\end{aligned}
$$

(b)

$$
\begin{aligned}
y^{3} \times x^{2} y^{3} x^{-1} y^{1} \div x^{2} & =y^{3} \times x^{2} y^{3} x^{-1} y^{1} \times x^{-2} \\
& =x^{2} x^{-1} x^{-2} y^{3} y^{3} y^{1} \\
& =x^{2-1-2} y^{3+3+1} \\
& =x^{-1} y^{7}
\end{aligned}
$$

(c) $(6-6 x)(-3 x)=6 \times(-3 x)-6 x \times(-3 x)=-18 x+18 x^{2}\left(\mathrm{OR}+18 x^{2}-18 x\right)$
(d) $(4+x)(-6+5 x)=4 \times(-6)+4 \times 5 x+x \times(-6)+x \times 5 x=-24+20 x-6 x+5 x^{2}=5 x^{2}+14 x-24$
(e) $-4=\frac{4 x}{5}-5$, so $\frac{4 x}{5}=-4+5$, so $\frac{4 x}{5}=1$, so $4 x=1 \times 5$, so $4 x=5$, so $\frac{4 x}{4}=\frac{5}{4}$

Hence solution is: $x=\frac{5}{4}$
(f) $\frac{-3}{-2 y}+6=5$, so $\frac{3}{2 y}=-6+5$, so $\frac{3}{2 y}=-1$, so $3=-1 \times 2 y$, so $3=-2 y$, so $y=\frac{3}{-2}$

Hence solution is: $y=-\frac{3}{2}$
3. There may be multiple answers for each question.
(a) $-4=4-2 \times 4$
(b) $5 \div(10 \div 2)=1$
(c) $6+2 \times 3+4=16$
4. Evaluate the following:
(a) $5 \times \sqrt{55-30 \div 5}-4^{3} \div 8$
$=5 \times \sqrt{55-6}-64 \div 8$
$=5 \times \sqrt{49}-8$
$=27$
(b) $45+5 \times \frac{\left(2^{3}+2^{2}\right) \times 3^{2}}{5^{3}-(3+2)}$

$$
\begin{aligned}
& =45+5 \times \frac{(8+4) \times 9}{125-5} \\
& =45+5 \times \frac{12 \times 9}{120} \\
& =45+5 \times \frac{9}{10} \\
& =45+\frac{45}{10} \\
& =49.5
\end{aligned}
$$

(c) $\left(45 \times 3^{-2}+\sqrt{25}\right)^{-3} \times 10^{5} \div 2^{2}$

$$
\begin{aligned}
& =\left(45 \times \frac{1}{3^{2}}+5\right)^{-3} \times 100000 \div 4 \\
& =(5+5)^{-3} \times 100000 \div 4 \\
& =(10)^{-3} \times 100000 \div 4 \\
& =\frac{1}{10^{3}} \times 100000 \div 4 \\
& =\frac{1}{1000} \times 100000 \div 4 \\
& =100 \div 4 \\
& =25
\end{aligned}
$$

5. Choice of size of jug is personal. Let's use 1L. A normal party balloon blown up is approximately $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times$ 30 cm . That's $27000 \mathrm{~cm}^{3}$ if we consider the balloon as a cube. This is a bit of an overestimate. $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$ so we need about 27000 mL or 27 L or 27 jugs. A balloon might take up a half or two-thirds of a $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$ box, so perhaps it's 13.5 jugs or 18 jugs.
If we consider the balloon as a sphere we could use $V=\frac{4}{3} \pi r^{3}$. This would give us $V=\frac{4}{3} \pi 15^{3}$ as half of 30 is 15 . This gives us about 14 jugs.
6. Let x be the number of three-legged stools and y be the number of four-legged stools. So $3 x+4 y=37$. We have one equation but two unknowns so there is no unique solution. However, $x=7, y=4$ is one solution. $x=11, y=1$ is another. $x=3, y=7$ is the only other solution. Can you spot a pattern?
