1. (a) Two points on Marvin's ride are (2,7,) and (1, 1). So $m=\frac{1-7}{1-2}=6$. Hence $y=6 x+C$. $(1,1)$ lies on this line, so $1=6+C \Rightarrow C=-5$, so $y=6 x-5$ is the equation of Marvin's ride.
(b) If Charlie's ride is parallel to Marvin's then the slope of Charlie's line must also be $m=6$, and $y=6 x+C$. Charlie starts at $(2,5)$, so $5=6 \times 2+C \Rightarrow C=-7$ and $y=6 x-7$.
To find where Charlie crosses the train track we must solve his equation and the train's equation simultaneously. $y=6 x-7$ and $y=3 x-2$. The LHSs equal each other so the RHSs must too. So $6 x-7=3 x-2$, so $x=\frac{5}{3}$ and $y=3$. So Charlie crosses the railway track at $\left(\frac{5}{3}, 3\right)$.
2. (a) $x^{2}+y^{2}=4^{2} \Rightarrow x^{2}+y^{2}=16$.
(b) $(2 \sqrt{2})^{2}+(2 \sqrt{2})^{2}=4 \times 2+4 \times 2=16$. Therefore $(2 \sqrt{2}, 2 \sqrt{2})$ lies on this circle.
(c) $x^{2}+(\sqrt{7})^{2}=16 \Rightarrow x^{2}+7=16 \Rightarrow x^{2}=9 \Rightarrow x= \pm 3$
3. Let F be the final amount he needs, I be the amount he has to invest, r be the interest rate and t be the number of years. Then $F=I e^{r t}$ so $e^{r t}=\frac{F}{I}$, so $r t=\ln \frac{F}{I}$, and $t=\left(\ln \frac{F}{I}\right) \div r$. Then

$$
\begin{aligned}
t & =\left(\ln \frac{1740}{600}\right) \div 0.06 \\
& =(\ln 2.90) \div 0.06 \\
& \approx 1.06 \div 0.06 \\
& \approx 17.75
\end{aligned}
$$

Hence he needs to invest $\$ 600$ for approximately 17.75 years. Therefore Damien can marry Celeste when he is about 37 years old.
4. (a) $\log _{15} 15^{13}=13$
(b) $4=4^{1}$, so $\quad \log _{4} 4=1$
(c) $\frac{1}{5}=5^{-1}$, so $\log _{5} \frac{1}{5}=\log _{5} 5^{-1}=-1$. Hence the answer is -1 .
(d) $10000=10^{4}$, so $\quad \log _{10} 10000=4$
(e) $\frac{1}{10}=10^{-1}$, so $\quad \log _{10} \frac{1}{10}=-1$
(f) $e=e^{1}$, so $\quad \ln e=1$
(g) $\frac{1}{e^{19}}=e^{-19}$, so $\ln \frac{1}{e^{19}}=\ln e^{-19}=-19$. Hence the answer is -19 .
(h) $4=16^{\frac{1}{2}}$, so $\quad \log _{16} 4=\frac{1}{2}$

