- 1. (a) Two points on Marvin's ride are (2,7,) and (1,1). So $m = \frac{1-7}{1-2} = 6$. Hence y = 6x + C. (1,1) lies on this line, so $1 = 6 + C \Rightarrow C = -5$, so y = 6x - 5 is the equation of Marvin's ride.
 - (b) If Charlie's ride is parallel to Marvin's then the slope of Charlie's line must also be m = 6, and y = 6x + C. Charlie starts at (2, 5), so $5 = 6 \times 2 + C \Rightarrow C = -7$ and y = 6x - 7. To find where Charlie crosses the train track we must solve his equation and the train's equation simultaneously. y = 6x - 7 and y = 3x - 2. The LHSs equal each other so the RHSs must too. So 6x - 7 = 3x - 2, so $x = \frac{5}{3}$ and y = 3. So Charlie crosses the railway track at $(\frac{5}{3}, 3)$.
- 2. (a) $x^2 + y^2 = 4^2 \Rightarrow x^2 + y^2 = 16.$
 - (b) $(2\sqrt{2})^2 + (2\sqrt{2})^2 = 4 \times 2 + 4 \times 2 = 16$. Therefore $(2\sqrt{2}, 2\sqrt{2})$ lies on this circle.
 - (c) $x^{2} + (\sqrt{7})^{2} = 16 \Rightarrow x^{2} + 7 = 16 \Rightarrow x^{2} = 9 \Rightarrow x = \pm 3$
- 3. Let F be the final amount he needs, I be the amount he has to invest, r be the interest rate and t be the number of years. Then $F = Ie^{rt}$ so $e^{rt} = \frac{F}{I}$, so $rt = \ln \frac{F}{I}$, and $t = (\ln \frac{F}{I}) \div r$. Then

$$t = \left(\ln \frac{1740}{600} \right) \div 0.06$$

= $(\ln 2.90) \div 0.06$
 $\approx 1.06 \div 0.06$
 ≈ 17.75

Hence he needs to invest \$600 for approximately 17.75 years. Therefore Damien can marry Celeste when he is about 37 years old.

4. (a)
$$\log_{15} 15^{13} = 13$$

(b) $4 = 4^1$, so $\log_4 4 = 1$ (c) $\frac{1}{5} = 5^{-1}$, so $\log_5 \frac{1}{5} = \log_5 5^{-1} = -1$. Hence the answer is -1. (d) $10000 = 10^4$, so $\log_{10} 10000 = 4$ (e) $\frac{1}{10} = 10^{-1}$, so $\log_{10} \frac{1}{10} = -1$ (f) $e = e^1$, so $\ln e = 1$ (g) $\frac{1}{e^{19}} = e^{-19}$, so $\ln \frac{1}{e^{19}} = \ln e^{-19} = -19$. Hence the answer is -19. (h) $4 = 16^{\frac{1}{2}}$, so $\log_{16} 4 = \frac{1}{2}$