- 1. To solve each of these, remember that if $a \times b = 0$, then either a = 0 or b = 0; and also that $0^n = 0$ for any natural number n. Then:
- (1) 6x(-6+7x) = 0, so 6x = 0-6 + 7x = 0or7x = 6x = 0 $x = \frac{6}{7}$ (2) (-2+y)(-8y+3) = 0, so -8y + 3 = 0 $-2 + y = 0 \qquad or$ y = 2-8y = -3 $y = \frac{3}{8}$ (3) 2(-3z+3)(8z-7) = 0, so $-3z + 3 = 0 \qquad or$ 8z - 7 = 0-3z = -38z = 7 $z = \frac{-3}{-3}$ $z = \frac{7}{8}$ z = 1(4) $(-8-7x)^9 = 0$, so -8-7x = 0, so -7x = 8, so $x = -\frac{8}{7}$ **2.** 6y(-5y-6) = 0, so 6y = 0 or -5y - 6 = 0-5y = 6y = 0 $y = -\frac{6}{5}$
- **3.** $f(x) = x^2 + 3x 1$, so $f(-8) = (-8)^2 + 3 \times (-8) - 1 = 64 - 24 - 1 = 39$

4. $5z^2 - 35z + 60 = 0$, so we use a = 5, b = -35, c = 60 in the quadratic formula. Hence

$$z = \frac{35 \pm \sqrt{(-35)^2 - 4 \times 5 \times 60}}{2 \times 5}$$

= $\frac{35 \pm \sqrt{1225 - 1200}}{10}$
= $\frac{35 \pm \sqrt{25}}{10}$
= $\frac{35 \pm 5}{10}$ or $\frac{35 - 5}{10}$
= $\frac{40}{10}$ or $\frac{30}{10}$
= 4 or 3

5. (a) The roots of $y = 2x^2 + 20x$ are the x values that satisfy $2x^2 + 20x = 0$. You can solve this equation either by using the quadratic formula or by factoring. Here we will use factoring.

First divide through by 2 to get $x^2 + 10x = 0$. Now because $x^2 + 10x = (x + 10)x$, the two roots of the quadratic equation are x = -10, 0.

- (b) The y-intercept occurs when x = 0, so substituting this into $y = 2x^2 + 20x$ gives y = 0.
- (c)

- 6. Let P be the amount invested, r be the interest rate per time period, n be the number of time periods and F be the final value. In each case, P = 400. Then:
 - (1) Interest compounds annually, so we use the rate and number of time periods given in the question. Hence r = 6.0% = 0.06 and n = 6, so $F = 400 \times (1 + 0.06)^6 = 400 \times 1.06^6 \approx 567.41$. The final balance is \$567.41.
 - (2) Interest compounds twice a year, so we need to halve the rate and double the number of time periods given in the question.
 Hence r = 3.0% = 0.03 and n = 12, so F = 400 × (1 + 0.03)¹² = 400 × 1.03¹² ≈ 570.30.
 The final balance is \$570.30.
 - (3) Interest compounds 4 times a year, so we need to divide the given rate by 4 and multiply the given number of years by 4.
 Hence r = 1.5% = 0.015 and n = 24, so F = 400 × (1 + 0.015)²⁴ = 400 × 1.015²⁴ ≈ 571.80.
 The final balance is \$571.80.
 - (4) Interest compounds 12 times a year, so we need to divide the given rate by 12 and multiply the given number of years by 12. Hence r = 0.5% = 0.005 and n = 72, so F = 400 × (1 + 0.005)⁷² = 400 × 1.005⁷² ≈ 572.82. The final balance is \$572.82.
 - (5) Interest compounds continuously, so $F = 400e^{0.06 \times 6} = 400e^{0.36} \approx 573.33$. The final balance is \$573.33.
- 7. (1) $y = -4 \times |-4x|$, so $y = -4 \times |4x|$, which is a graph of negative absolute value. Hence the matching graph is Graph M.
 - (2) -12y = -13y + 1, so y = 1. Hence this is a horizontal line, with y positive. Hence the matching graph is Graph C.
 - (3) 7y + 3x 15 = -7x 16, so 7y = -10x 1. Hence this is a straight line, with negative gradient and negative y-intercept. Hence the matching graph is Graph J.

- (4) $y = e^{7x}$, which is a graph of exponential growth. Hence the matching graph is Graph K.
- (5) $-11y + 3 = 15x^2 8$, so $11y = -15x^2 + 11$. This equation includes an x^2 term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the *y*-intercept is positive. Hence the matching graph is Graph R.
- (6) $2y + 4x^2 13 = 8y + 7x^2 13$, so $6y = -3x^2$. This equation includes an x^2 term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the *y*-intercept is 0. Hence the matching graph is Graph S.
- (7) $3y 2x^2 12 = 2y + 6$, so $y = 2x^2 + 18$. This equation includes an x^2 term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the *y*-intercept is positive. Hence the matching graph is Graph O.
- (8) -5y = -15y 5x, so 10y = -5x. Hence this is a straight line, with negative gradient and passing through the origin. Hence the matching graph is Graph I.