1. To solve each of these, remember that if $a \times b=0$, then either $a=0$ or $b=0$; and also that $0^{n}=0$ for any natural number n. Then:
(1) $6 x(-6+7 x)=0$, so

$$
\begin{aligned}
& 6 x=0 \quad \text { or } \quad-6+7 x=0 \\
& x=0 \\
& 7 x=6 \\
& x=\frac{6}{7}
\end{aligned}
$$

(2) $(-2+y)(-8 y+3)=0$, so

$$
\begin{aligned}
& -2+y=0 \\
& y=2 \\
& -8 y+3=0 \\
& -8 y=-3 \\
& y=\frac{3}{8}
\end{aligned}
$$

(3) $2(-3 z+3)(8 z-7)=0$, so

$$
\begin{aligned}
-3 z+3 & =0 & \text { or } & 8 z-7
\end{aligned}=0
$$

(4) $(-8-7 x)^{9}=0$, so $-8-7 x=0$, so $-7 x=8$, so $x=-\frac{8}{7}$
2. $6 y(-5 y-6)=0$, so

$$
\begin{aligned}
& 6 y=0 \quad \text { or } \quad-5 y-6=0 \\
& y=0 \\
& -5 y=6 \\
& y=-\frac{6}{5}
\end{aligned}
$$

3. $f(x)=x^{2}+3 x-1$, so
$f(-8)=(-8)^{2}+3 \times(-8)-1=64-24-1=39$
4. $5 z^{2}-35 z+60=0$, so we use $a=5, b=-35, c=60$ in the quadratic formula. Hence

$$
\begin{aligned}
z & =\frac{35 \pm \sqrt{(-35)^{2}-4 \times 5 \times 60}}{2 \times 5} \\
& =\frac{35 \pm \sqrt{1225-1200}}{10} \\
& =\frac{35 \pm \sqrt{25}}{10} \\
& =\frac{35+5}{10} \text { or } \frac{35-5}{10} \\
& =\frac{40}{10} \text { or } \frac{30}{10} \\
& =4 \text { or } 3
\end{aligned}
$$

5. (a) The roots of $y=2 x^{2}+20 x$ are the x values that satisfy $2 x^{2}+20 x=0$. You can solve this equation either by using the quadratic formula or by factoring. Here we will use factoring.

First divide through by 2 to get $x^{2}+10 x=0$. Now because $x^{2}+10 x=(x+10) x$, the two roots of the quadratic equation are $x=-10,0$.
(b) The y-intercept occurs when $x=0$, so substituting this into $y=2 x^{2}+20 x$ gives $y=0$.
(c)

6. Let P be the amount invested, r be the interest rate per time period, n be the number of time periods and F be the final value. In each case, $P=400$. Then:
(1) Interest compounds annually, so we use the rate and number of time periods given in the question.

Hence $r=6.0 \%=0.06$ and $n=6$, so $F=400 \times(1+0.06)^{6}=400 \times 1.06^{6} \approx 567.41$.
The final balance is $\$ 567.41$.
(2) Interest compounds twice a year, so we need to halve the rate and double the number of time periods given in the question.
Hence $r=3.0 \%=0.03$ and $n=12$, so $F=400 \times(1+0.03)^{12}=400 \times 1.03^{12} \approx 570.30$.
The final balance is $\$ 570.30$.
(3) Interest compounds 4 times a year, so we need to divide the given rate by 4 and multiply the given number of years by 4 .
Hence $r=1.5 \%=0.015$ and $n=24$, so $F=400 \times(1+0.015)^{24}=400 \times 1.015^{24} \approx 571.80$.
The final balance is $\$ 571.80$.
(4) Interest compounds 12 times a year, so we need to divide the given rate by 12 and multiply the given number of years by 12 .
Hence $r=0.5 \%=0.005$ and $n=72$, so $F=400 \times(1+0.005)^{72}=400 \times 1.005^{72} \approx 572.82$.
The final balance is $\$ 572.82$.
(5) Interest compounds continuously, so $F=400 e^{0.06 \times 6}=400 e^{0.36} \approx 573.33$. The final balance is $\$ 573.33$.
7. (1) $y=-4 \times|-4 x|$, so $y=-4 \times|4 x|$, which is a graph of negative absolute value. Hence the matching graph is Graph M.
(2) $-12 y=-13 y+1$, so $y=1$. Hence this is a horizontal line, with y positive. Hence the matching graph is Graph C.
(3) $7 y+3 x-15=-7 x-16$, so $7 y=-10 x-1$. Hence this is a straight line, with negative gradient and negative y-intercept. Hence the matching graph is Graph J.
(4) $y=e^{7 x}$, which is a graph of exponential growth. Hence the matching graph is Graph K.
(5) $-11 y+3=15 x^{2}-8$, so $11 y=-15 x^{2}+11$. This equation includes an x^{2} term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the y-intercept is positive. Hence the matching graph is Graph R.
(6) $2 y+4 x^{2}-13=8 y+7 x^{2}-13$, so $6 y=-3 x^{2}$. This equation includes an x^{2} term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the y-intercept is 0 . Hence the matching graph is Graph S.
(7) $3 y-2 x^{2}-12=2 y+6$, so $y=2 x^{2}+18$. This equation includes an x^{2} term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the y-intercept is positive. Hence the matching graph is Graph O.
(8) $-5 y=-15 y-5 x$, so $10 y=-5 x$. Hence this is a straight line, with negative gradient and passing through the origin. Hence the matching graph is Graph I.

