1. Let $\left(x_{1}, y_{1}\right)=(-1, \sqrt{2})$ and $\left(x_{2}, y_{2}\right)=(10, \sqrt{2})$. Then $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$, so $d=\sqrt{(-1-10)^{2}+(\sqrt{2}-\sqrt{2})^{2}}=\sqrt{(-11)^{2}+0^{2}}=\sqrt{121+0}=\sqrt{121}$.
Hence $d=11$
2. First we number the equations for convenience:

$$
\begin{align*}
& -8 y+7 x=38 \tag{1}\\
& 3 y-8 x=-25 \tag{2}
\end{align*}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by 3 and equation (2) by 8 , giving

$$
\begin{align*}
& -24 y+21 x=114 \tag{3}\\
& 24 y-64 x=-200 \tag{4}
\end{align*}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
24 y-24 y-64 x+21 x=-200+114 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
-43 x=-86 \\
x=2 \tag{7}
\end{array}
$$

Next we substitute the value for x into equation (1) to obtain the value for y, giving

$$
\begin{aligned}
-8 y+7 \times 2 & =38 \\
-8 y & =24 \quad \text { so } \\
y & =-3
\end{aligned}
$$

Hence the simultaneous solution to equations (1) and (2) is $(2,-3)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $-8 \times(-3)+7 \times 2=38$
(2) $3 \times(-3)-8 \times 2=-25$

$$
\begin{aligned}
24+14 & =38 \\
38 & =38
\end{aligned}
$$

$$
\begin{array}{r}
-9-16=-25 \\
-25=-25
\end{array}
$$

Both equations turned into true statements, as required. Hence the answer is correct.)
3. First we number the equations for convenience:

$$
\begin{array}{r}
-30=-6 x-30 y \\
14+4 x=-3 y \tag{2}
\end{array}
$$

We solve these using substitution. Rearranging equation (1) with x on the right-hand side gives

$$
\begin{equation*}
30 y-30=-6 x \tag{3}
\end{equation*}
$$

Dividing both sides of (3) by -6 gives

$$
\begin{equation*}
-5 y+5=x \tag{4}
\end{equation*}
$$

Substituting for x in equation (2),

$$
\begin{equation*}
14+4 \times(-5 y+5)=-3 y \tag{5}
\end{equation*}
$$

Now (5) is an equation only involving y which gives:

$$
\begin{aligned}
14-20 y+20 & =-3 y \\
-17 y & =-34 \\
y & =2
\end{aligned}
$$

Next we substitute the value for y into equation (4) to obtain the value for x, giving

$$
x=-5 \times 2+5=-5
$$

Hence the simultaneous solution to equations (1) and (2) is $(-5,2)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $-30=-6 \times(-5)-30 \times 2$
(2) $14+4 \times(-5)=-3 \times 2$
$-30=30-60$
$14-20=-6$
$-30=-30$
$-6=-6$

Both equations turned into true statements, as required. Hence the answer is correct.)
4. We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{align*}
& -3 y-3 x=21 \tag{1}\\
& -8 y-4 x=28 \tag{2}
\end{align*}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by -4 and equation (2) by 3 , giving

$$
\begin{align*}
& 12 y+12 x=-84 \tag{3}\\
& -24 y-12 x=84 \tag{4}
\end{align*}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
12 y-24 y+12 x-12 x=-84+84 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{align*}
-12 y & =0 \tag{6}\\
y & =0 \tag{7}
\end{align*}
$$

Next we substitute the value for y into equation (1) to obtain the value for x, giving

$$
\begin{aligned}
-3 \times 0-3 x & =21 \\
-3 x & =21 \quad \text { so } \\
x & =-7
\end{aligned}
$$

Hence the simultaneous solution to equations (1) and (2) is $(-7,0)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $-3 \times 0-3 \times(-7)=21$
(2) $-8 \times 0-4 \times(-7)=28$
$21=21$
$28=28$

Both equations turned into true statements, as required. Hence the answer is correct.)
5. We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{array}{r}
-210+3 x=-6 y \\
-90 y+70=-10 x \tag{2}
\end{array}
$$

We solve these using substitution. Dividing both sides of equation (2) by -10 gives

$$
\begin{equation*}
9 y-7=x \tag{3}
\end{equation*}
$$

Substituting for x in equation (1),

$$
\begin{equation*}
-210+3 \times(9 y-7)=-6 y \tag{4}
\end{equation*}
$$

Now (4) is an equation only involving y which gives:

$$
\begin{aligned}
-210+27 y-21 & =-6 y \\
33 y & =231 \\
y & =7
\end{aligned}
$$

Next we substitute the value for y into equation (3) to obtain the value for x, giving

$$
x=9 \times 7-7=56
$$

Hence the simultaneous solution to equations (1) and (2) is $(56,7)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):
(1) $-210+3 \times 56=-6 \times 7$
$-210+168=-42$
$-42=-42$
(2) $-90 \times 7+70=-10 \times 56$
$-630+70=-560$
$-560=-560$

Both equations turned into true statements, as required. Hence the answer is correct.)
6. $f(z)=\left|\frac{6}{3 z}\right|$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- denominator of a fraction cannot be 0 , so $3 z \neq 0$.

Hence, the domain of this function is $(-\infty, 0) \cup(0, \infty)$, i.e. $z \neq 0$.
7. $f(w)=\frac{9}{w^{2}-2}$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0 , so $w^{2}-2 \neq 0$;
- so $w^{2} \neq 2$;
- we can square any number and result will always be a positive number or 0 , so $w \neq \pm \sqrt{2}$.

Hence, the domain of this function is $(-\infty,-\sqrt{2}) \cup(-\sqrt{2}, \sqrt{2}) \cup(\sqrt{2}, \infty)$, i.e. $w \neq \pm \sqrt{2}$.
8. $f(z)=\left|(\sqrt{z})^{2}\right|$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- we can square any number;
- we can only take the square root of positive numbers or 0 , so $z \geq 0$.

Hence, the domain of this function is $[0, \infty)$, i.e. $z \geq 0$.
When evaluating the range, we need to keep in mind the following (starting with variable z):

- square root is always positive or 0 , so $\sqrt{z} \geq 0$;
- squaring always gives a positive or 0 , so $(\sqrt{z})^{2} \geq 0$;
- absolute value is always positive or 0 , so $\left|(\sqrt{z})^{2}\right| \geq 0$.

Hence, the range of this function is $[0, \infty)$.
9. $f(w)=-|\sqrt{w}|$

When evaluating the range, we need to keep in mind the following (starting with variable w):

- square root is always positive or 0 , so $\sqrt{w} \geq 0$;
- absolute value is always positive or 0 , so $|\sqrt{w}| \geq 0$;
- multiplying by a negative number usually reverses the inequality, so $-|\sqrt{w}| \leq 0$.

Hence, the range of this function is $(-\infty, 0]$.
10. $f(x)=\frac{2}{x^{2}-10}$

When evaluating the range, we need to keep in mind the following (starting with variable x):

- squaring always gives a positive or 0 , so $0 \leq x^{2}$;
- fraction can be 0 only if its numerator is 0 (which is not the case), denominator cannot be 0 ;
- so $-10 \leq x^{2}-10$ and $x^{2}-10 \neq 0$.

Hence, the range of this function is $\left(-\infty,-\frac{1}{5}\right] \cup(0, \infty)$.
11. $f(z)=-z^{2}-2 z+3$, so
$f(-5)=-(-5)^{2}-2 \times(-5)+3=-25+10+3=-12$
12. (a) The roots of $y=4 x^{2}+16 x-84$ are the x values that satisfy $4 x^{2}+16 x-84=0$. You can solve this equation either by using the quadratic formula or by factoring. Here we will use factoring.

First divide through by 4 to get $x^{2}+4 x-21=0$. Now because $x^{2}+4 x-21=(x+7)(x-3)$, the two roots of the quadratic equation are $x=-7,3$.
(b) The y-intercept occurs when $x=0$, so substituting this into $y=4 x^{2}+16 x-84$ gives $y=-84$.
(c)

13. $4 y^{2}-4 y-80=0$, so we use $a=4, b=-4, c=-80$ in the quadratic formula. Hence

$$
\begin{aligned}
y & =\frac{4 \pm \sqrt{(-4)^{2}-4 \times 4 \times(-80)}}{2 \times 4} \\
& =\frac{4 \pm \sqrt{16-(-1280)}}{8} \\
& =\frac{4 \pm \sqrt{1296}}{8} \\
& =\frac{4+36}{8} \text { or } \frac{4-36}{8} \\
& =\frac{40}{8} \text { or } \frac{-32}{8} \\
& =5 \text { or }-4
\end{aligned}
$$

14. To solve each of these, remember that if $a \times b=0$, then either $a=0$ or $b=0$; and also that $0^{n}=0$ for any natural number n. Then:
(1) $8 y(10 y-7)=0$, so

$$
\begin{aligned}
8 y & =0 & \text { or } & 10 y-7
\end{aligned}=0
$$

(2) $(5 x+3)(-10+x)=0$, so

$$
\begin{aligned}
5 x+3 & =0 & \text { or } & -10+x
\end{aligned}=0
$$

(3) $5(-3+7 z)(-1+7 z)=0$, so

$$
\begin{aligned}
-3+7 z & =0 & \text { or } & -1+7 z
\end{aligned}=0
$$

(4) $(-4 z+5)^{2}=0$, so $-4 z+5=0$, so $-4 z=-5$, so $z=\frac{5}{4}$
15. $8(7 z-9)(3 z-3)=0$, so

$$
\begin{aligned}
& 7 z-9=0 \\
& 7 z=9 \\
& z=\frac{9}{7} \\
& \text { or } \\
& 3 z-3=0 \\
& 3 z=3 \\
& z=\frac{3}{3} \\
& z=1
\end{aligned}
$$

