1. $\sum_{i=-2}^{2} 5 i^{2}=5 \times(-2)^{2}+5 \times(-1)^{2}+5 \times 0^{2}+5 \times 1^{2}+5 \times 2^{2}=20+5+0+5+20=50$

Hence $z=50$
2. $\sum_{\substack{j=0 \\ 6}}^{6}(-2)^{j} j=(-2)^{0} \times 0+(-2)^{1} \times 1+(-2)^{2} \times 2+(-2)^{3} \times 3+(-2)^{4} \times 4+(-2)^{5} \times 5+(-2)^{6} \times 6=0-2+8-24+$
$64-160+270$
3. $\sum_{i=3}^{4} x i=-7, \quad$ so $\quad 3 x+4 x=-7, \quad$ so $\quad 7 x=-7$

Hence $x=-1$
4. $\sum_{i=1}^{3}-3 x=0, \quad$ so $\quad-3 x-3 x-3 x=0, \quad$ so $\quad-9 x=0$

Hence $x=0$
5. $\frac{6}{2}+\frac{6}{3}+\frac{6}{4}+\frac{6}{5}=\sum_{i=2}^{5} \frac{6}{i}$
6. $x^{2}+4 x^{3}+9 x^{4}+16 x^{5}+\ldots=\sum_{i=1}^{\infty} i^{2} x^{i+1}$
7. To determine whether the given line passes through the point $\left(x_{1}, y_{1}\right)=(5,-9)$, we need to substitute the coordinates of the point into the equation of the line. Now,

$$
\begin{aligned}
9 y & =81+27 x, \text { so } \\
9 \times(-9) & =81+27 \times 5 \\
-81 & =81+135 \\
-81 & =216
\end{aligned}
$$

The last statement is not true, so our line does not pass through the point $(5,-9)$.
8. (a) First we rearrange the equation to get $x=1$. Therefore, $x=1$ regardless of the value of y. Hence, the line does not intercept the y-axis at all and there is no y-intercept.
(b) The line $x=1$ has constant x-value. Hence, the x-intercept is $x=1$.
(c)

9. Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
0 & =9 y-8 x, \quad \text { so } \\
-9 y & =-8 x \\
y & =\frac{8}{9} x
\end{aligned}
$$

Hence the gradient is $m=\frac{8}{9}$ and the y-intercept is $c=0$.
10. Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
3 x-5-2 y & =-5 y-3 x, \text { so } \\
-2 y+5 y & =-3 x-3 x+5 \\
3 y & =-6 x+5 \\
y & =-2 x+\frac{5}{3}
\end{aligned}
$$

Hence the gradient is $m=-2$ and the y-intercept is $c=\frac{5}{3}$.
11. Let $\left(x_{1}, y_{1}\right)=(-6,0)$ and $\left(x_{2}, y_{2}\right)=(-5,10)$. To find the equation of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ you must find the gradient m and the y-intercept c.
Then $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{10-0}{-5-(-6)}=\frac{10}{1}$. Hence $m=10$.
Thus the equation of the line is $y=10 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-6,0)$ into this equation to get the value for c.
Hence $0=10 \times(-6)+c$, so $0=-60+c$. Hence $c=0-(-60)=60$.
Hence the equation of the line is $y=10 x+60$.
12. Thus the equation of the line is $y=1 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(2,0)$ into this equation to get the value for c. Hence $0=1 \times 2+c$, so $-2=c$.
Hence the equation of the line is $y=x-2$.
13. To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
4 x-7+y & =-51+15 x-10 y, \text { so } \\
y+10 y & =15 x-4 x-51+7 \\
11 y & =11 x-44 \\
y & =x-4
\end{aligned}
$$

Hence, the gradient of the original line is $m=1$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $\quad y=x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-8,-1)$ into this equation to get the value for c.
$-1=1 \times(-8)+c$, so $-1=-8+c$. Hence $c=-1-(-8)=7$.
Hence the equation of the line is $\quad y=x+7$.
14. To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
4 y+8 & =12 x, \text { so } \\
4 y & =12 x-8 \\
y & =3 x-2
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=3$.
The new line is perpendicular to the original line, so the new line has gradient $m=-\frac{1}{m_{0}}$. Hence $m=-\frac{1}{3}$.

Thus the equation of the line is $y=-\frac{1}{3} x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(-24,4)$ into this equation to get the value of c :
$4=-\frac{1}{3} \times(-24)+c$, so $4=8+c$. Hence $c=4-8=-4$.
Hence the equation of the line is $\quad y=-\frac{1}{3} x-4$.
15. To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
35 & =-7 y, \text { so } \\
7 y & =-35 \\
y & =-5
\end{aligned}
$$

Hence, the gradient of the original line is $m=0$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $y=c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(0,9)$ into this equation to get the value for c.
$9=c$.
Hence the equation of the line is $\quad y=9$.
16. The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the new line is vertical and has the form $x=c$, where c is a constant.
The point $(-5,8)$ lies on the new line, so the equation of the new line is $x=-5$.
17. To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
-63 & =-7 y, \text { so } \\
7 y & =63 \\
y & =9
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=0$.
The original line is horizontal (its gradient is equal to 0), so the new line is vertical and has an equation of the form $x=c$. The point $(2,-7)$ lies on the new line, so the equation of the new line is $x=2$.
18. The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the line perpendicular to it will be horizontal with equation of the form $y=c$, where c is a constant. The point $(-9,4)$ lies on the new line, so the equation of the new line is $y=4$.

