1. $|2 y+5|=2$, so

$$
\begin{array}{lll}
2 y+5=2 & \text { or } & 2 y+5=-2 \\
2 y=2-5 & 2 y=-2-5 \\
2 y=-3 & 2 y=-7 \\
\frac{2 y}{2}=\frac{-3}{2} & \frac{2 y}{2}=\frac{-7}{2}
\end{array}
$$

Hence the solutions are: $y=-\frac{3}{2}$ and $y=-\frac{7}{2}$
2.

$$
\begin{aligned}
y^{3} x^{-2} x^{3} x^{-2} \times y^{2} \div x^{2} & =y^{3} x^{-2} x^{3} x^{-2} \times y^{2} \times x^{-2} \\
& =x^{-2} x^{3} x^{-2} x^{-2} y^{3} y^{2} \\
& =x^{-2+3-2-2} y^{3+2} \\
& =x^{-3} y^{5}
\end{aligned}
$$

3. $\frac{15 y^{-2} y^{1}}{y^{3} y^{1}}=\frac{15 y^{-2+1}}{y^{3+1}}=\frac{15 y^{-1}}{y^{4}}=15 y^{-1-4}=15 y^{-5}$
4. $3 z(3+6 z)=3 \times 3 z+6 z \times 3 z=9 z+18 z^{2}$
5. $(4+3 x)(3+4 x)=4 \times 3+4 \times 4 x+3 x \times 3+3 x \times 4 x=12+16 x+9 x+12 x^{2}=12 x^{2}+25 x+12$
6. $-2=\frac{6 x}{-3}-2$, so $-2 x=-2+2$, so $-2 x=0$

Hence solution is: $x=0$
7. $-3+\frac{-3}{5 z}=5$, so $\frac{-3}{5 z}=3+5$, so $\frac{-3}{5 z}=8$, so $-3=8 \times 5 z$, so $-3=40 z$, so $z=\frac{-3}{40}$

Hence solution is: $z=-\frac{3}{40}$
8.

$$
\begin{aligned}
\frac{-15}{20} \div \frac{20}{-7} & =\frac{-15}{20} \times \frac{-7}{20} \\
& =\frac{\not \boxed{ } \times(-3)}{\not \boxed{5} \times 4} \times \frac{-7}{20} \\
& =\frac{-3}{4} \times \frac{-7}{20} \\
& =\frac{-3 \times(-7)}{4 \times 20} \\
& =\frac{21}{80}
\end{aligned}
$$

Hence solution is: $y=\frac{21}{80}$
9. In interval form the answer is $(-7.6,9.0)$ and on a real line the answer is:

10. In inequality form the answer is $6.4 \leq x<12.6$ and on a real line the answer is:

11. $-1=3 z-6$, so $-1+6=3 z$, so $5=3 z$, so $\frac{5}{3}=\frac{3 z}{3}$

Hence $z=\frac{5}{3}$
12. $-2 z-3=3$, so $-2 z=3+3$, so $-2 z=6$, so $\frac{-2 z}{-2}=\frac{6}{-2}$

Hence $z=-3$
13.

$$
\begin{aligned}
-4 x-3 & \geq-3 x+2 \\
-4 x-3+3 & \geq-3 x+2+3 \\
-4 x & \geq-3 x+5 \\
-4 x+3 x & \geq-3 x+3 x+5 \\
-x & \geq 5 \\
-x \div(-1) & \leq 5 \div(-1) \\
x & \leq-5
\end{aligned}
$$

In interval format the answer is $(\infty,-5]$, and on a real line the answer is:

14. $\sqrt{18 z}=9 \sqrt{10}$, so $\sqrt{18 z}=\sqrt{9 \times 9 \times 10}=\sqrt{810}$, so $18 z=810$. Hence $z=45$
15. $\sqrt{108}=y \sqrt{3}$. Now $\sqrt{108}=\sqrt{36 \times 3}=\sqrt{6 \times 6 \times 3}=6 \sqrt{3}$. Hence $y=6$
16.

$$
\begin{aligned}
(\sqrt{5}-\sqrt{3}) \sqrt{2} & =\sqrt{2} \times \sqrt{5}-\sqrt{2} \times \sqrt{3} \\
& =\sqrt{2 \times 5}-\sqrt{2 \times 3} \\
& =\sqrt{10}-\sqrt{6}
\end{aligned}
$$

17.

$$
\begin{aligned}
(\sqrt{8}-\sqrt{3})(\sqrt{6}-\sqrt{6}) & =(\sqrt{8}-\sqrt{3}) \times 0 \\
& =0
\end{aligned}
$$

18. Substituting for x into the equation gives $4=-6 z+6$, so $-6 z=4-6$, so $-6 z=-2$, so $\frac{-6 z}{-6}=\frac{-2}{-6}$

Hence $z=\frac{1}{3}$
19. Mayumi ate x pieces of sushi. Rumi ate 4 more, so $x+4$.

So, $x+x+4=26$
$2 x=22$
$x=11$

So Mayumi ate 11 pieces and Rumi ate $11+4=15$ pieces (check: $11+15=26$)
20. Let the first hospital have x doctors. The second hospital therefore has $3 x-20$ doctors.

So, $x+3 x-20=204$
$4 x=224$
$x=56$

So the first hospital has 56 doctors and the second hospital has $56+3 \times 56-20=148$. (check: $56+148=204$)
21. $\left(\left(x+x^{2}\right) \div x-16-x\right) \div 3=\left(\frac{x+x^{2}}{x}-16-x\right) \div 3$
$=\left(\frac{x(1+x)}{x}-16-x\right) \div 3$
$=(1+x-16-x) \div 3$
$=-15 \div 3$
$=-5$

The x 's disappear, so regardless of what number x is the answer is always -5 .

