1. (1) $B \cap E=\{3,9,1\} \cap\{-3,-1,7,2,0,9,-2,1,6\}=\{9,1\}$ On Venn diagram:

(2) i. $B \cap D=\{3,5,9,-2,4,8,6\} \cap\{-2,6\}=\{-2,6\}$

ii. $B \cup D=\{3,5,9,-2,4,8,6\} \cup\{-2,6\}=\{3,5,9,-2,4,8,6\}$

$B \quad D$
iii. $B \backslash D=\{3,5,9,-2,4,8,6\} \backslash\{-2,6\}=\{3,5,9,4,8\}$

iv. $D \backslash B=\{-2,6\} \backslash\{3,5,9,-2,4,8,6\}=\emptyset$

(3) i. $G=\{3,-1\}$
ii. $G \cup A=\{3,-1\} \cup\{3,5,7,4,8,6\}=\{3,-1,5,7,4,8,6\}$
iii. $G \cap A=\{3,-1\} \cap\{3,5,7,4,8,6\}=\{3\}$
iv. $G \backslash A=\{3,-1\} \backslash\{3,5,7,4,8,6\}=\{-1\}$
v.

$$
\begin{aligned}
A \backslash(G \cup E) & =\{3,5,7,4,8,6\} \backslash(\{3,-1\} \cup\{-2\}) \\
& =\{3,5,7,4,8,6\} \backslash\{3,-1,-2\} \\
& =\{5,7,4,8,6\}
\end{aligned}
$$

vi.

$$
\begin{aligned}
(G \cup A) \backslash E & =(\{3,-1\} \cup\{3,5,7,4,8,6\}) \backslash\{-2\} \\
& =\{3,-1,5,7,4,8,6\} \backslash\{-2\} \\
& =\{3,-1,5,7,4,8,6\}
\end{aligned}
$$

vii.

$$
\begin{aligned}
E \cup(G \cup A) & =\{-2\} \cup(\{3,-1\} \cup\{3,5,7,4,8,6\}) \\
& =\{-2\} \cup\{3,-1,5,7,4,8,6\} \\
& =\{3,5,-1,7,-2,4,8,6\}
\end{aligned}
$$

viii. $E \cap \emptyset=\{-2\} \cap \emptyset=\emptyset$
ix.

$$
\begin{aligned}
(A \cap G) \cup(A \cap E) & =(\{3,5,7,4,8,6\} \cap\{3,-1\}) \cup(\{3,5,7,4,8,6\} \cap\{-2\}) \\
& =\{3\} \cup \emptyset \\
& =\{3\}
\end{aligned}
$$

(4) i. $\operatorname{Prob}\left(s_{1}\right.$ is even $)=\frac{3}{6}=\frac{1}{2}$
ii. $\operatorname{Prob}\left(s_{1}=5\right)=\frac{1}{6}$
iii. $\operatorname{Prob}\left(s_{1}<2\right)=\frac{1}{6}$
iv. $\operatorname{Prob}\left(s_{1}\right.$ is even and $\left.s_{1}<2\right)=\frac{0}{6}=0$
v. $\operatorname{Prob}\left(s_{1}\right.$ is even or $\left.s_{1}<2\right)=\frac{4}{6}=\frac{2}{3}$
vi. $\operatorname{Prob}\left(s_{1}\right.$ is even given that $\left.s_{1}<2\right)=\frac{0}{1}=0$
vii. $\operatorname{Prob}\left(s_{1}\right.$ is even $)=\frac{1}{2}$, and $\operatorname{Prob}\left(s_{2}\right.$ is even $)=\frac{1}{3}$.

Now s_{1} and s_{2} are chosen independently,
so $\operatorname{Prob}\left(\right.$ both s_{1} and s_{2} are even $)=\operatorname{Prob}\left(s_{1}\right.$ is even $) \times \operatorname{Prob}\left(s_{2}\right.$ is even $)$.
Hence $\operatorname{Prob}\left(\right.$ both s_{1} and s_{2} are even $)=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
viii. By the principle of inclusion \backslash exclusion,
$\operatorname{Prob}\left(s_{1}\right.$ is even or s_{2} is even $)=\operatorname{Prob}\left(s_{1}\right.$ is even $)+\operatorname{Prob}\left(s_{2}\right.$ is even $)-\operatorname{Prob}\left(\right.$ both s_{1} and s_{2} are even $)$.
Hence $\operatorname{Prob}\left(s_{1}\right.$ is even or s_{2} is even $)=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}=\frac{2}{3}$
ix. Now s_{1} and s_{2} are chosen independently, so
$\operatorname{Prob}\left(s_{1}\right.$ is even given that s_{2} is even $)=\operatorname{Prob}\left(s_{1}\right.$ is even $)$.
Hence $\operatorname{Prob}\left(s_{1}\right.$ is even given that s_{2} is even $)=\frac{1}{2}$
2. (1) $E \cap B=\{3,-1,0,4,8,6\} \cap\{1\}=\emptyset$

On Venn diagram:

$E \quad B$
(2) i. $B \cap C=\{-3,-1,2,6\} \cap\{7,2\}=\{2\}$

ii. $B \cup C=\{-3,-1,2,6\} \cup\{7,2\}=\{-3,-1,7,2,6\}$

iii. $B \backslash C=\{-3,-1,2,6\} \backslash\{7,2\}=\{-3,-1,6\}$

iv. $C \backslash B=\{7,2\} \backslash\{-3,-1,2,6\}=\{7\}$

(3) i. $C=\{3,5,4,6\}$
ii. $C \cup F=\{3,5,4,6\} \cup\{7,4,6\}=\{3,5,7,4,6\}$
iii. $F \cap C=\{7,4,6\} \cap\{3,5,4,6\}=\{4,6\}$
iv. $C \backslash F=\{3,5,4,6\} \backslash\{7,4,6\}=\{3,5\}$
v.

$$
\begin{aligned}
F \backslash(H \cup C) & =\{7,4,6\} \backslash(\{3,7,9\} \cup\{3,5,4,6\}) \\
& =\{7,4,6\} \backslash\{3,5,7,9,4,6\} \\
& =\emptyset
\end{aligned}
$$

vi.

$$
\begin{aligned}
(F \cap C) \cap H & =(\{7,4,6\} \cap\{3,5,4,6\}) \cap\{3,7,9\} \\
& =\{4,6\} \cap\{3,7,9\} \\
& =\emptyset
\end{aligned}
$$

vii.

$$
\begin{aligned}
C \cup(F \cap H) & =\{3,5,4,6\} \cup(\{7,4,6\} \cap\{3,7,9\}) \\
& =\{3,5,4,6\} \cup\{7\} \\
& =\{3,5,7,4,6\}
\end{aligned}
$$

viii. $\emptyset \cap C=\emptyset \cap\{3,5,4,6\}=\emptyset$
ix.

$$
\begin{aligned}
(C \cup H) \backslash(F \cup \emptyset) & =(\{3,5,4,6\} \cup\{3,7,9\}) \backslash(\{7,4,6\} \cup \emptyset) \\
& =\{3,5,7,9,4,6\} \backslash\{7,4,6\} \\
& =\{3,5,9\}
\end{aligned}
$$

(4) i. $\operatorname{Prob}\left(t_{1}\right.$ is odd $)=\frac{1}{2}$
ii. $\operatorname{Prob}\left(t_{1}=2\right)=\frac{1}{2}$
iii. $\operatorname{Prob}\left(t_{1}>1\right)=\frac{1}{2}$
iv. $\operatorname{Prob}\left(t_{1}\right.$ is odd and $\left.t_{1}>1\right)=\frac{0}{2}=0$
v. $\operatorname{Prob}\left(t_{1}\right.$ is odd or $\left.t_{1}>1\right)=\frac{2}{2}=1$
vi. $\operatorname{Prob}\left(t_{1}\right.$ is odd given that $\left.t_{1}>1\right)=\frac{0}{1}=0$
vii. $\operatorname{Prob}\left(t_{1}\right.$ is odd $)=\frac{1}{2}$, and $\operatorname{Prob}\left(t_{2}\right.$ is odd $)=\frac{3}{7}$.

Now t_{1} and t_{2} are chosen independently,
so $\operatorname{Prob}\left(\operatorname{both} t_{1}\right.$ and t_{2} are odd $)=\operatorname{Prob}\left(t_{1}\right.$ is odd $) \times \operatorname{Prob}\left(t_{2}\right.$ is odd $)$.
Hence $\operatorname{Prob}\left(\right.$ both t_{1} and t_{2} are odd $)=\frac{1}{2} \times \frac{3}{7}=\frac{3}{14}$
viii. By the principle of inclusion \backslash exclusion,
$\operatorname{Prob}\left(t_{1}\right.$ is odd or t_{2} is odd $)=\operatorname{Prob}\left(t_{1}\right.$ is odd $)+\operatorname{Prob}\left(t_{2}\right.$ is odd $)-\operatorname{Prob}\left(\right.$ both t_{1} and t_{2} are odd $)$.
Hence $\operatorname{Prob}\left(t_{1}\right.$ is odd or t_{2} is odd $)=\frac{1}{2}+\frac{3}{7}-\frac{3}{14}=\frac{5}{7}$
ix. Now t_{1} and t_{2} are chosen independently, so
$\operatorname{Prob}\left(t_{1}\right.$ is odd given that t_{2} is odd $)=\operatorname{Prob}\left(t_{1}\right.$ is odd $)$.
Hence $\operatorname{Prob}\left(t_{1}\right.$ is odd given that t_{2} is odd $)=\frac{1}{2}$
3. (1) $F \cap B=\{3,7,0,9\} \cap\{7\}=\{7\}$

On Venn diagram:

(2) i. $B \cap A=\{6\} \cap\{1\}=\emptyset$

ii. $B \cup A=\{6\} \cup\{1\}=\{6,1\}$

iii. $B \backslash A=\{6\} \backslash\{1\}=\{6\}$

iv. $A \backslash B=\{1\} \backslash\{6\}=\{1\}$

(3) \quad i. $C=\{-1,0,9,1\}$
ii. $E \cup C=\{5,0,4,1\} \cup\{-1,0,9,1\}=\{5,-1,0,9,4,1\}$
iii. $C \cap E=\{-1,0,9,1\} \cap\{5,0,4,1\}=\{0,1\}$
iv. $E \backslash C=\{5,0,4,1\} \backslash\{-1,0,9,1\}=\{5,4\}$
v.

$$
\begin{aligned}
E \backslash(C \cup G) & =\{5,0,4,1\} \backslash(\{-1,0,9,1\} \cup\{9,8\}) \\
& =\{5,0,4,1\} \backslash\{-1,0,9,8,1\} \\
& =\{5,4\}
\end{aligned}
$$

vi.

$$
\begin{aligned}
(G \cup C) \cap E & =(\{9,8\} \cup\{-1,0,9,1\}) \cap\{5,0,4,1\} \\
& =\{-1,0,9,8,1\} \cap\{5,0,4,1\} \\
& =\{0,1\}
\end{aligned}
$$

vii.

$$
\begin{aligned}
C \cup(E \cap G) & =\{-1,0,9,1\} \cup(\{5,0,4,1\} \cap\{9,8\}) \\
& =\{-1,0,9,1\} \cup \emptyset \\
& =\{-1,0,9,1\}
\end{aligned}
$$

viii. $\emptyset \backslash E=\emptyset \backslash\{5,0,4,1\}=\emptyset$
ix.

$$
\begin{aligned}
(C \cup E) \backslash(C \cup G) & =(\{-1,0,9,1\} \cup\{5,0,4,1\}) \backslash(\{-1,0,9,1\} \cup\{9,8\}) \\
& =\{-1,5,0,9,4,1\} \backslash\{-1,0,9,8,1\} \\
& =\{5,4\}
\end{aligned}
$$

(4) i. $\operatorname{Prob}\left(s_{1}\right.$ is even $)=\frac{2}{4}=\frac{1}{2}$
ii. $\operatorname{Prob}\left(s_{1}=10\right)=0$
iii. $\operatorname{Prob}\left(s_{1}<9\right)=\frac{3}{4}$
iv. $\operatorname{Prob}\left(s_{1}\right.$ is even and $\left.s_{1}<9\right)=\frac{2}{4}=\frac{1}{2}$
v. $\operatorname{Prob}\left(s_{1}\right.$ is even or $\left.s_{1}<9\right)=\frac{3}{4}$
vi. $\operatorname{Prob}\left(s_{1}\right.$ is even given that $\left.s_{1}<9\right)=\frac{2}{3}$
vii. $\operatorname{Prob}\left(s_{1}\right.$ is even $)=\frac{1}{2}$, and $\operatorname{Prob}\left(s_{2}\right.$ is even $)=\frac{1}{3}$.

Now s_{1} and s_{2} are chosen independently,
so $\operatorname{Prob}\left(\right.$ both s_{1} and s_{2} are even $)=\operatorname{Prob}\left(s_{1}\right.$ is even $) \times \operatorname{Prob}\left(s_{2}\right.$ is even $)$.
Hence $\operatorname{Prob}\left(\right.$ both s_{1} and s_{2} are even $)=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
viii. By the principle of inclusion \backslash exclusion,
$\operatorname{Prob}\left(s_{1}\right.$ is even or s_{2} is even $)=\operatorname{Prob}\left(s_{1}\right.$ is even $)+\operatorname{Prob}\left(s_{2}\right.$ is even $)-\operatorname{Prob}\left(\right.$ both s_{1} and s_{2} are even $)$.
Hence $\operatorname{Prob}\left(s_{1}\right.$ is even or s_{2} is even $)=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}=\frac{2}{3}$
ix. Now s_{1} and s_{2} are chosen independently, so
$\operatorname{Prob}\left(s_{1}\right.$ is even given that s_{2} is odd $)=\operatorname{Prob}\left(s_{1}\right.$ is even $)$.
Hence $\operatorname{Prob}\left(s_{1}\right.$ is even given that s_{2} is odd $)=\frac{1}{2}$
4. (1) $C \cap F=\{5,7,2,-2,8\} \cap\{3,5,2,0,-2,1,6\}=\{5,2,-2\}$

On Venn diagram:

(2) i. $E \cap B=\{-1,5,2,9,4,8,6\} \cap\{-1,7,2,4,-2,6,1\}=\{-1,2,4,6\}$

$E \quad B$
ii. $E \cup B=\{-1,5,2,9,4,8,6\} \cup\{-1,7,2,4,-2,6,1\}=\{-1,5,7,2,9,4,-2,8,6,1\}$

iii. $E \backslash B=\{-1,5,2,9,4,8,6\} \backslash\{-1,7,2,4,-2,6,1\}=\{5,9,8\}$

iv. $B \backslash E=\{-1,7,2,4,-2,6,1\} \backslash\{-1,5,2,9,4,8,6\}=\{7,-2,1\}$

(3)
i. $F=\{5,7,2,0,9,4,8,6\}$
ii. $C \cup E=\{-3,-1,2,0,-2,1\} \cup\{3,7,2,9,1\}=\{-3,3,-1,7,2,0,9,-2,1\}$
iii. $C \cap F=\{-3,-1,2,0,-2,1\} \cap\{5,7,2,0,9,4,8,6\}=\{2,0\}$
iv. $F \backslash E=\{5,7,2,0,9,4,8,6\} \backslash\{3,7,2,9,1\}=\{5,0,4,8,6\}$
v.

$$
\begin{aligned}
C \backslash(F \cup E) & =\{-3,-1,2,0,-2,1\} \backslash(\{5,7,2,0,9,4,8,6\} \cup\{3,7,2,9,1\}) \\
& =\{-3,-1,2,0,-2,1\} \backslash\{3,5,7,2,0,9,4,8,6,1\} \\
& =\{-3,-1,-2\}
\end{aligned}
$$

vi.

$$
\begin{aligned}
(F \cup E) \cap C & =(\{5,7,2,0,9,4,8,6\} \cup\{3,7,2,9,1\}) \cap\{-3,-1,2,0,-2,1\} \\
& =\{3,5,7,2,0,9,4,8,6,1\} \cap\{-3,-1,2,0,-2,1\} \\
& =\{2,0,1\}
\end{aligned}
$$

vii.

$$
\begin{aligned}
F \cup(C \cap E) & =\{5,7,2,0,9,4,8,6\} \cup(\{-3,-1,2,0,-2,1\} \cap\{3,7,2,9,1\}) \\
& =\{5,7,2,0,9,4,8,6\} \cup\{2,1\} \\
& =\{5,7,2,0,9,4,8,6,1\}
\end{aligned}
$$

viii. $\emptyset \cup C=\emptyset \cup\{-3,-1,2,0,-2,1\}=\{-3,-1,2,0,-2,1\}$
ix.

$$
\begin{aligned}
(C \cup F) \cap(F \cap E) & =(\{-3,-1,2,0,-2,1\} \cup\{5,7,2,0,9,4,8,6\}) \cap(\{5,7,2,0,9,4,8,6\} \cap\{3,7,2,9,1\}) \\
& =\{-1,7,2,0,-2,1,6,-3,5,9,4,8\} \cap\{7,2,9\} \\
& =\{7,2,9\}
\end{aligned}
$$

(4) i. $\operatorname{Prob}\left(r_{1}\right.$ is odd $)=\frac{2}{5}$
ii. $\operatorname{Prob}\left(r_{1}=6\right)=\frac{1}{5}$
iii. $\operatorname{Prob}\left(r_{1}>2\right)=\frac{4}{5}$
iv. $\operatorname{Prob}\left(r_{1}\right.$ is odd and $\left.r_{1}>2\right)=\frac{2}{5}$
v. $\operatorname{Prob}\left(r_{1}\right.$ is odd or $\left.r_{1}>2\right)=\frac{4}{5}$
vi. $\operatorname{Prob}\left(r_{1}\right.$ is odd given that $\left.r_{1}>2\right)=\frac{2}{4}=\frac{1}{2}$
vii. $\operatorname{Prob}\left(r_{1}\right.$ is odd $)=\frac{2}{5}$, and $\operatorname{Prob}\left(r_{2}\right.$ is odd $)=\frac{3}{6}=\frac{1}{2}$.

Now r_{1} and r_{2} are chosen independently,
so $\operatorname{Prob}\left(\right.$ both r_{1} and r_{2} are odd $)=\operatorname{Prob}\left(r_{1}\right.$ is odd $) \times \operatorname{Prob}\left(r_{2}\right.$ is odd $)$.
Hence $\operatorname{Prob}\left(\right.$ both r_{1} and r_{2} are odd $)=\frac{2}{5} \times \frac{1}{2}=\frac{1}{5}$
viii. By the principle of inclusion \backslash exclusion,
$\operatorname{Prob}\left(r_{1}\right.$ is odd or r_{2} is odd $)=\operatorname{Prob}\left(r_{1}\right.$ is odd $)+\operatorname{Prob}\left(r_{2}\right.$ is odd $)-\operatorname{Prob}\left(\operatorname{both} r_{1}\right.$ and r_{2} are odd $)$.
Hence $\operatorname{Prob}\left(r_{1}\right.$ is odd or r_{2} is odd $)=\frac{2}{5}+\frac{1}{2}-\frac{1}{5}=\frac{7}{10}$
ix. Now r_{1} and r_{2} are chosen independently, so
$\operatorname{Prob}\left(r_{1}\right.$ is odd given that r_{2} is even $)=\operatorname{Prob}\left(r_{1}\right.$ is odd $)$.
Hence $\operatorname{Prob}\left(r_{1}\right.$ is odd given that r_{2} is even $)=\frac{2}{5}$
5. (1) $F \cap C=\{-3,-1,9,-2\} \cap\{3,7,-2\}=\{-2\}$

On Venn diagram:

(2) i. $C \cap A=\{3,9,4,8\} \cap\{-3,3,5,-1,0,-2\}=\{3\}$

ii. $C \cup A=\{3,9,4,8\} \cup\{-3,3,5,-1,0,-2\}=\{3,-3,-1,5,0,9,4,-2,8\}$

iii. $C \backslash A=\{3,9,4,8\} \backslash\{-3,3,5,-1,0,-2\}=\{9,4,8\}$

iv. $A \backslash C=\{-3,3,5,-1,0,-2\} \backslash\{3,9,4,8\}=\{-3,5,-1,0,-2\}$

(3) i. $G=\{3,2\}$
ii. $G \cup H=\{3,2\} \cup\{3,5,7,9,4,-2,6\}=\{3,5,7,2,9,-2,4,6\}$
iii. $A \cap H=\{-3,-1,2,0,9,-2,8,6,1\} \cap\{3,5,7,9,4,-2,6\}=\{9,-2,6\}$
iv. $A \backslash H=\{-3,-1,2,0,9,-2,8,6,1\} \backslash\{3,5,7,9,4,-2,6\}=\{-3,-1,2,0,8,1\}$
v.

$$
\begin{aligned}
A \backslash(G \cup H) & =\{-3,-1,2,0,9,-2,8,6,1\} \backslash(\{3,2\} \cup\{3,5,7,9,4,-2,6\}) \\
& =\{-3,-1,2,0,9,-2,8,6,1\} \backslash\{3,5,7,2,9,-2,4,6\} \\
& =\{-3,-1,0,8,1\}
\end{aligned}
$$

vi.

$$
\begin{aligned}
(A \backslash H) \backslash G & =(\{-3,-1,2,0,9,-2,8,6,1\} \backslash\{3,5,7,9,4,-2,6\}) \backslash\{3,2\} \\
& =\{-3,-1,2,0,8,1\} \backslash\{3,2\} \\
& =\{-3,-1,0,8,1\}
\end{aligned}
$$

vii.

$$
\begin{aligned}
G \backslash(A \backslash H) & =\{3,2\} \backslash(\{-3,-1,2,0,9,-2,8,6,1\} \backslash\{3,5,7,9,4,-2,6\}) \\
& =\{3,2\} \backslash\{-3,-1,2,0,8,1\} \\
& =\{3\}
\end{aligned}
$$

viii. $H \cup \emptyset=\{3,5,7,9,-2,4,6\} \cup \emptyset=\{3,5,7,9,-2,4,6\}$
ix.

$$
\begin{aligned}
(\emptyset \cup H) \cup(G \cup A) & =(\emptyset \cup\{3,5,7,9,-2,4,6\}) \cup(\{3,2\} \cup\{-3,-1,2,0,9,-2,8,1,6\}) \\
& =\{3,5,7,9,4,-2,6\} \cup\{3,-3,-1,2,0,9,-2,8,6,1\} \\
& =\{3,-1,7,2,0,-2,1,6,-3,5,9,4,8\}
\end{aligned}
$$

(4) i. $\operatorname{Prob}\left(r_{1}\right.$ is odd $)=\frac{3}{5}$
ii. $\operatorname{Prob}\left(r_{1}=9\right)=\frac{1}{5}$
iii. $\operatorname{Prob}\left(r_{1} \geq 6\right)=\frac{4}{5}$
iv. $\operatorname{Prob}\left(r_{1}\right.$ is odd and $\left.r_{1} \geq 6\right)=\frac{2}{5}$
v. $\operatorname{Prob}\left(r_{1}\right.$ is odd or $\left.r_{1} \geq 6\right)=\frac{5}{5}=1$
vi. $\operatorname{Prob}\left(r_{1}\right.$ is odd given that $\left.r_{1} \geq 6\right)=\frac{2}{4}=\frac{1}{2}$
vii. $\operatorname{Prob}\left(r_{1}\right.$ is odd $)=\frac{3}{5}$, and $\operatorname{Prob}\left(r_{2}\right.$ is odd $)=\frac{2}{4}=\frac{1}{2}$.

Now r_{1} and r_{2} are chosen independently,
so $\operatorname{Prob}\left(\right.$ both r_{1} and r_{2} are odd $)=\operatorname{Prob}\left(r_{1}\right.$ is odd $) \times \operatorname{Prob}\left(r_{2}\right.$ is odd $)$.
Hence $\operatorname{Prob}\left(\right.$ both r_{1} and r_{2} are odd $)=\frac{3}{5} \times \frac{1}{2}=\frac{3}{10}$
viii. By the principle of inclusion \backslash exclusion,
$\operatorname{Prob}\left(r_{1}\right.$ is odd or r_{2} is odd $)=\operatorname{Prob}\left(r_{1}\right.$ is odd $)+\operatorname{Prob}\left(r_{2}\right.$ is odd $)-\operatorname{Prob}\left(\right.$ both r_{1} and r_{2} are odd $)$. Hence $\operatorname{Prob}\left(r_{1}\right.$ is odd or r_{2} is odd $)=\frac{3}{5}+\frac{1}{2}-\frac{3}{10}=\frac{4}{5}$
ix. Now r_{1} and r_{2} are chosen independently, so
$\operatorname{Prob}\left(r_{1}\right.$ is odd given that r_{2} is even $)=\operatorname{Prob}\left(r_{1}\right.$ is odd).
Hence $\operatorname{Prob}\left(r_{1}\right.$ is odd given that r_{2} is even $)=\frac{3}{5}$

