
Magpie R package 0.2.0 User Manual

Camille Maumet

July 14, 2008

Contents

1 Introduction 3

2 Installation 4

3 Quick Start 5

3.1 Introduction . 5
3.2 Pre-processing . 6

3.2.1 Format the output classes �le . 6
3.2.2 Format the genes expression �le . 6

3.3 De�ne your experiment . 7
3.3.1 Load your dataset . 7
3.3.2 Store your feature selection options . 8
3.3.3 Store the options related to your experiment . 9

3.4 Run one-layer and two-layer cross-validation . 11
3.4.1 External One-Layer Cross Validation . 11
3.4.2 two-layer Cross Validation . 12

3.5 Classify new samples . 13

4 Access the results of one-layer and two-layer cross-validation 16

4.1 Introduction . 16
4.2 Argument of the method getResults . 16
4.3 Error rates . 17

4.3.1 Optional argument errorType . 17
4.3.2 Examples . 17

4.4 Genes selected . 17
4.4.1 Optional argument genesType . 17
4.4.2 Examples . 18

4.5 Best value of option . 18
4.5.1 Overview . 18
4.5.2 Examples . 18

4.6 Execution time . 18
4.6.1 Overview . 18
4.6.2 Examples . 18

5 Plots and graphics 19

5.1 Plot the cross-validated error rates of one-layer cross-validation 19
5.1.1 Plot the summary error rate only . 19
5.1.2 Plot the summary error rate only . 19

5.2 Plot the fold error rates of two-layer cross-validation . 20
5.2.1 Plot the summary error rate only . 20

Bibliography 20

2

Chapter 1

Introduction

This package provides classes and methods to train classi�ers and to estimate the predictive error rate of
classi�ers using external one-layer cross-validation and two-layer cross-validation . These two techniques
of cross-validation have been presented respectively in [1] and [5], [8], [7]. One-layer cross-validation
can be used to determine a nearly unbiased estimate of the error rate in a context of feature selection.
The feature selection is performed for di�erent sizes of subsets of genes and the corresponding error
rate is estimated by cross-validation. As an output of this one-layer cross-validation, the user gets a
cross-validated error rate per size of subset. However, if the user wants to know the smallest estimated
error rate over all the subsets considered, then a second layer of cross-validation is required to estimate
the e�ect of this choice.

3

Chapter 2

Installation

The Magpie package will be soon available online but, at the moment it has to be installed manually.
To this aim, once you have got a copy of the windows zip �le containing the package, you must open
R and in the menu Packages, click on Install package(s) from Local zip file.... Select the zip
�le containing the package. If the installation fails, you might have to install manually the following
packages before:

• BioConductor using the following command lines in R:

source("http://bioconductor.org/biocLite.R")

bioLite()

• The MLInterfaces and Biobase packages using the following command lines in R:

bioLite("MLInterfaces")

bioLite("Biobase")

• The R packages: 'e1071', 'sma', 'pamr', 'kernlab ' using the following command lines in R:

install.packages(c('e1071', 'sma', 'pamr', 'kernlab '))

Then, try again to install the magpie zip �le from the menu. If it still does not work please do not
hesitate to report the error.

You are now ready to load the magpie package with the following R command and start using Magpie:

library(`magpie')

4

Chapter 3

Quick Start

3.1 Introduction

This section presents a quick review of the package functionality by giving an example. We will use two
�les raw_geneExpr.txt and raw_classes.txt that contain the gene expression levels of 20 genes and
the output classes of 10 samples. The samples, labeled S1 to S10, come from two classes labeled A and
B. The �rst column of the gene expression �le contains the name of the genes.

raw_classes.txt

S1 A

S2 B

S3 A

S4 A

S5 B

S6 B

S7 A

S8 A

S9 A

S10 B

raw_geneExpr.txt

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

211316_x_at 193.7 131 287 187.8 201.9 314.9 501.1 340.1 580.7 333.1

201947_s_at 905.1 1268 633.6 623.2 988.6 813.7 647.7 808.5 703.9 473.5

208018_s_at 77.8 48.1 275.2 84.1 57.9 78.5 145.6 38.2 102.6 131.7

208884_s_at 164.3 157.1 280.7 297.8 238.1 171.7 243.9 171.6 168.3 73.7

218251_at 251.2 250.4 205.1 129.8 256.7 189.9 199.2 329.2 316.7 542.1

220712_at 165.8 112.9 49.7 113.4 103 123 143.9 111.6 69.2 159.5

34764_at 46.9 56.2 36.4 74.6 81.1 100.1 43.3 74 56.4 68.9

217754_at 269.2 176.1 314 137.5 269.6 177.7 107.6 176.7 98.4 146

221938_x_at 203.9 197.8 189.6 141.2 108 221.3 205.7 180.1 112.4 278

209492_x_at 711.7 787.6 652.4 921.1 863.6 1129.2 789.1 999.6 805.9 1201.3

211596_s_at 142.5 211.8 147.6 214.8 132.2 135 90.2 116.1 208.4 163.9

221925_s_at 78.5 103 130 157.3 116.4 137 133.2 85.7 148.9 29.6

200804_at 3544.6 3120.1 2430.5 2761.5 2721.3 2328.2 2212.7 2403.2 2397 1655.6

206529_x_at 17.3 22.5 27.4 31.9 1.3 1.8 336.8 16.3 68.3 33

213224_s_at 37.7 60 48.3 83.9 104.6 12 71 28.3 77.6 7.5

215628_x_at 315.7 370.5 396.1 334 321.9 361.3 331.8 380.9 342.2 558.3

211362_s_at 56 56.4 84.3 19.7 146.9 63.8 34.1 50.2 35.3 69

221058_s_at 64.2 79.6 97.8 89.4 135.4 49.5 81 126.8 39 31.2

210381_s_at 72.8 65 31.8 74.4 64.7 124.3 32.4 15.5 80.9 84.6

5

216989_at 7.1 36.3 24.1 25.3 45.6 54.4 7.8 54.6 5.5 16.8

3.2 Pre-processing

The aim of the Magpie package is not to provide a way of pre-processing your micro-array data. Other
packages already provide this functionality and we assume that we are working on pre-processed data.
The pre-processing step that is undertaken here aims to convert the data �les to the right format to be
able to use them in Magpie and provides the possibility of normalizing over the samples and genes. This
format is, by the way, very simple and you might not need to use the following function. In this case,
you can go directly to section 3.3. The two functions formatClasses and formatGenesExpr can be used
as helpers to convert respectively the output classes �le and the gene expression �le.

3.2.1 Format the output classes �le

The following command is used to format our output classes �le.

> formatClasses(classDataFile="pathToFile/raw_classes.txt",

outClassDataFile="pathToFile/formated_classes.txt",

sampleNames=TRUE,

vertical=TRUE)

This command creates a new �le situated at outClassDataFile, in our case in the folder pathToFile
with the name formated_classes.txt. sampleNames is set to TRUE which means that the names of
the samples are available in the entry �le. And vertical is TRUE since the output classes are presented
in a column. By default, the function assumes that the class labels are separated by a blank character
(blanks or tabs, etc) but you can choose your own separator, say a comma, by adding another parameter
to the function: separator=",". The output �le is as follows.

formated_classes

"S1" "S2" "S3" "S4" "S5" "S6" "S7" "S8" "S9" "S10"

"type" "A" "B" "A" "A" "B" "B" "A" "A" "A" "B"

3.2.2 Format the genes expression �le

The following command is used to format our gene expression �le.

> formatGenesExpr(geneExprDataFile="pathToFile/raw_geneExpr.txt",

outGeneExprDataFile="pathToFile/formated_geneExpr.txt",

rowNames=TRUE, colNames=TRUE,

transpose=FALSE,

normalize=TRUE, lineNorm=TRUE, colNorm=TRUE,

firstLineNorm=FALSE)

This command creates a new �le situated at outGeneExprDataFile, in our case in the folder pathToFile
with the name formated_geneExpr.txt. rowNames is set to TRUE which means that names are avail-
able on the �rst row of the entry �le (in our case the names of the samples). colNames is set to TRUE
which means that names are available on the �rst column of the entry �le (in our case the names of
the genes).transpose is FALSE which indicates that each row corresponds to a gene and each column
to a sample. By default, the function assumes that the gene expression values are separated by any
blank character (blank, tab, horizontal tab...) but you can choose your own separator, say a comma, by
adding another parameter to the function: separator=",". normalize is set to TRUE which indicates
that we want to normalize the gene expression over the rows (lineNorm set to TRUE) and the columns
(colNorm set to TRUE), starting with the column normalization (firstLineNorm set to FALSE).The
output, considering only three decimal places, is as follows.

6

> round(read.table("pathToFile/formated_geneExpr.txt"), digits=3)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

211316_x_at 0.131 0.095 0.270 0.157 0.166 0.287 0.496 0.308 0.538 0.369

201947_s_at 0.281 0.424 0.275 0.241 0.376 0.342 0.295 0.337 0.300 0.242

208018_s_at 0.143 0.095 0.703 0.191 0.130 0.195 0.391 0.094 0.258 0.396

208884_s_at 0.192 0.197 0.457 0.432 0.340 0.271 0.418 0.269 0.270 0.141

218251_at 0.195 0.209 0.221 0.125 0.243 0.199 0.226 0.342 0.337 0.689

220712_at 0.328 0.241 0.137 0.279 0.249 0.329 0.418 0.297 0.188 0.518

34764_at 0.168 0.217 0.182 0.332 0.355 0.485 0.228 0.356 0.277 0.405

217754_at 0.333 0.235 0.542 0.212 0.408 0.298 0.196 0.294 0.167 0.297

221938_x_at 0.248 0.259 0.321 0.213 0.161 0.364 0.367 0.294 0.188 0.555

209492_x_at 0.183 0.218 0.234 0.295 0.272 0.394 0.298 0.346 0.285 0.508

211596_s_at 0.215 0.343 0.310 0.402 0.243 0.275 0.199 0.235 0.431 0.405

221925_s_at 0.160 0.226 0.370 0.399 0.291 0.379 0.399 0.235 0.418 0.099

200804_at 0.342 0.324 0.327 0.331 0.321 0.304 0.314 0.311 0.318 0.262

206529_x_at 0.034 0.047 0.075 0.078 0.003 0.005 0.969 0.043 0.184 0.106

213224_s_at 0.152 0.261 0.272 0.421 0.516 0.066 0.421 0.153 0.430 0.050

215628_x_at 0.193 0.243 0.337 0.253 0.240 0.298 0.297 0.312 0.287 0.559

211362_s_at 0.194 0.211 0.408 0.085 0.623 0.299 0.174 0.234 0.168 0.393

221058_s_at 0.183 0.244 0.389 0.317 0.472 0.191 0.339 0.485 0.153 0.146

210381_s_at 0.243 0.234 0.148 0.309 0.264 0.562 0.159 0.070 0.371 0.464

216989_at 0.052 0.287 0.247 0.231 0.409 0.541 0.084 0.538 0.055 0.203

3.3 De�ne your experiment

Now that our data is ready, we can go further and specify the options of our classi�cation task. To this
end, we creates three objects. An object of class dataset to store the microarray data, an object of class
featureSelectionOptions to store the options relative to the feature selection process. And �nally an
experiment object which stores all the information needed before starting the classi�cation task.

3.3.1 Load your dataset

Since we have already created the data �les in the previous section the creation of the dataset object is
fairly simple. The following command creates the dataset and loads the data from the �les.

> myDataset <- new("dataset",

dataId="exampleData",

geneExprFile="formated_geneExpr.txt",

classesFile="formated_classes.txt",

dataPath=file.path("pathToFile"))

The creation of the dataset object is undertaken by calling the function new("dataset") with the
following arguments:

• dataId, an id for your dataset

• geneExprFile, name of the �le in which the gene expression values are stored

• classesFile, name of the �le in which the output classes are stored

• dataPath, the path to the folder where the gene expression �le and the output �le are stored

If you have a look at your dataset, you will notice that the slot eset is NULL, you have to load the data
manually before inserting it in the experiment object.

dataId

exampleData

dataPath

7

pathToFile

geneExprFile

formated_geneExpr.txt

classesFile

formated_classes.txt

eset: use 'getEset(object)'

3.3.2 Store your feature selection options

Two feature selection methods are currently available, the Recursive Feature Elimination (RFE) based
on Support Vector Machine (SVM), as presented in [3] and the Nearest Shrunken Centroid (NSC) as
described in [6]. The former can be used by creating an object of class geneSubsets and the latter by
creating an object of class thresholds.

RFE-SVM as a method of feature selection

The object of class geneSubsets is meant to store the information relative to the subsets of genes that
must be considered during forward selection by the RFE. Basically, you must specify the sizes of the
subsets that should be considered. There are three easy ways to reach this goal.

The easiest way is to keep the default values which corresponds to subsets of size one to the num-
ber total of features by powers of two. If you want to use this default geneSubsets, you can ignore the
current section and go directly to section 3.3.3.

Another solution is to de�ne the size of the biggest subset to be considered and the speed of the RFE:
high or slow. By default the speed is set to high. This means, as proposed in [3], that the biggest subset
is considered �rst, then a subset of size equal to the greatest power of two smaller than the biggest size
and then decreasing by a powers of two until reaching a single feature. With a slow value for speed the
size of the subsets decreases by one at each step. This methods can produce better results but is highly
computationally intensive.

> geneSubsets <- new("geneSubsets", speed="high", maxSubsetSize=20)

> geneSubsets

optionValues: 1 2 4 8 16 20 (maxSubsetSize: 20, speed:high, noOfOptions:6)

> geneSubsets <- new("geneSubsets", speed="slow", maxSubsetSize=20)

> geneSubsets

optionValues: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (maxSubsetSize: 20,

speed:slow, noOfOptions:20)

Alternatively, you can also give all the subset sizes that the software must try. For example the
following command ask for subsets of size 1,2,3,5,9,10,15,20.

> geneSubsets <- new("geneSubsets", speed="high", optionValues=c(1,2,3,5,9,10,15,20))

> geneSubsets

optionValues: 1 2 3 5 9 10 15 20 (maxSubsetSize: 20, speed:high, noOfOptions:8)

Be careful not to give a number larger than the actual number of genes in your dataset or an error,
with a message similar to the one presented above, will be generated when you will try to incorporate
this object into your experiment.

Error in validObject(.Object) :

invalid class "experiment" object: The maximum of genes in 'geneSubsets'(70) must not

be greater than the number of features in 'dataset'(20)

8

NSC as a method of feature selection

The object of class thresholds is meant to store the thresholds that must be considered by the nearest
shrunken algorithm to determine which one is the best. Basically, you must specify the thresholds that
should be considered. There are two easy ways to reach this goal.

The easiest way is to keep the default values which corresponds to the thresholds generated by the
function pamr.train on the whole dataset, for more deatils please refer to the pamr package documen-
tation. If you want to use this default thresholds, you can ignore the current section and go directly
to section 3.3.3.

Alternatively, you can specify all the thresholds that must be considered by the software. For example
the following command ask for thresholds 0,0.1,0.2,0.3,0.4,0.5,1,2.

> thresholds <- new("thresholds", optionValues=c(0,0.1,0.2,0.3,0.4,0.5,1,2))

3.3.3 Store the options related to your experiment

The last step in the de�nition of your experiment is to integrate your dataset, your feature selection
options and decide of the options related to the experiment. This aim is reached by creating an object
of class experiment. The argument must be speci�ed as follows:

• dataset, dataset object that we created in section 3.3.1

• noFolds1stLayer, number of folds to be created in the inner layer of two-layer cross-validation. 1
corresponds to leave-one-out

• noFolds2ndLayer, number of folds to be created in the outer layer of two-layer cross-validation
and for the one-layer cross-validation. 1 corresponds to leave-one-out

• classifierName, name of the classi�er to be used 'svm' (Support Vector Machine), or 'nsc' (Nearest
Shrunken Centroid).

• featureSelectionMethod, name of the feature selection method: 'rfe' (Recursive Feature Elimi-
nation) or 'nsc' (Nearest Shrunken Centroid).

• typeFoldCreation, name of the method to be used to generate the folds: 'naive', 'balanced' or
'original'.

• svmKernel, name of the feature kernel used both for the SVM as a feature selection method in
RFE or for SVM as a classi�er: 'linear' (Linear Kernel), 'radial' (Radial Kernel) or 'polynomial'
(Polynomial Kernel).

• noOfRepeats, cross-validation allocates observations randomly to folds, unless it is leave-one-out
cross-validation, repeating the process is likely to give a di�erent result. The �nal results are
then averaged over the repeats. As mentioned in [2], this is believed to improve the accuracy of
estimates. noOfRepeats is the number of repeats to be done, both for one-layer and two-layer of
cross-validation.

• featureSelectionOptions, geneSubsets or thresholds object that we created in section 3.3.2
or missing if you want to use the default values

In the next sections, we will work with the dataset vV70genes available in the Magpie package. Before
using it, you must call data('vV70genesDataset'), we will use the default geneSubsets.

For example, if we want to set the feature selection method as RFE-SVM, with an SVM as classi�er,
a cross-validation with 10 folds in the outer layer, 9 folds in the inner layer, we can have:

> myExperiment <- new ("experiment",

dataset = vV70genes,

noFolds1stLayer = 9,

noFolds2ndLayer = 10,

9

classifierName = "svm",

featureSelectionMethod = 'rfe',

typeFoldCreation = "original",

svmKernel = "linear",

noOfRepeats = 3)

> experiment

noFolds1stLayer:9

noFolds2ndLayer:10

classifierName:svm (svmKernel: linear)

typeFoldCreation:original

noOfRepeats:3

featureSelectionOptions

optionValues: 1 2 4 8 16 32 64 70 (maxSubsetSize: 70, speed:high, noOfOptions:8)

dataset

dataId

vantVeer_70

dataPath: use 'getDataPath(object)'

geneExprFile: use 'getGeneExprFile(object)'

classesFile: use 'getClassesFile(object)'

eset: use 'getEset(object)'

No Results for external CV (1 layer)

No Results for 2 layers external CV

Final Classifier has not been computed yet

Similarly, if we want to set the feature selection method as NSC, with a NSC classi�er, a cross-
validation with 10 folds in the outer layer, 9 folds in the inner layer performed 10 times, we can have:

> myExperiment2 <- new ("experiment",

dataset = vV70genes,

noFolds1stLayer = 9,

noFolds2ndLayer = 10,

classifierName = "nsc",

featureSelectionMethod = 'nsc',

typeFoldCreation = "original",

noOfRepeats = 2)

> myExperiment2

experiment

noFolds1stLayer:9

noFolds2ndLayer:10

classifierName:nsc

typeFoldCreation:original

noOfRepeats:2

featureSelectionOptions

optionValues:0 0.0907303 0.1814605 0.2721908 0.362921 0.4536513 0.5443815 0.6351118 0.725842 0.8165723 0.9073025 0.9980328 1.088763 1.179493 1.270223 1.360954 1.451684 1.542414 1.633144 1.723875 1.814605 1.905335 1.996066 2.086796 2.177526 2.268256 2.358986 2.449717 2.540447 2.631177 (noOfOptions:30)

dataset

dataId

vantVeer_70

dataPath: use 'getDataPath(object)'

geneExprFile: use 'getGeneExprFile(object)'

classesFile: use 'getClassesFile(object)'

eset: use 'getEset(object)'

No Results for external CV (1 layer)

10

No Results for 2 layers external CV

Final Classifier has not been computed yet

As we can see from the display of the experiment, the thresholds have been successfully updated.

3.4 Run one-layer and two-layer cross-validation

That was easy, wasn't it? It's now time to run our experiment. Two methods are here to help us in
doing this important step: runOneLayerExtCV and runTwoLayerExtCV for, respectively, computing an
external one-layer or an external two-layer cross-validation including feature selection.

3.4.1 External One-Layer Cross Validation

As a reminder, let's just state that the external one-layer cross-validation aims to assess the error rate
of a classi�er using feature selection in an appropriate manner. At the end of this step we will get a
cross-validated error-rate for each size of subset considered. Since all the options have already been
chosen via the experiment object, the command to start the cross-validation is trivial.

> # Necessary to find the same results

> set.seed(234)

> myExperiment <- runOneLayerExtCV(myExperiment)

One the previous command has been run, we can look again at our experiment, the result of one-layer
cross-validation has been updated.

> myExperiment

experiment

noFolds1stLayer:9

noFolds2ndLayer:10

classifierName:svm (svmKernel: linear)

typeFoldCreation:original

noOfRepeats:3

featureSelectionOptions

optionValues: 1 2 4 8 16 32 64 70 (maxSubsetSize: 70, speed:high, noOfOptions:8)

dataset

dataId

vantVeer_70

dataPath: use 'getDataPath(object)'

geneExprFile: use 'getGeneExprFile(object)'

classesFile: use 'getClassesFile(object)'

eset: use 'getEset(object)'

resultRepeated1LayerCV

original1LayerCV: 3 combined 1 layer 10-folds CV: use 'getOriginal1LayerCV(object)'

summaryFrequencyTopGenes: use 'getFrequencyTopGenes(object)'

summaryErrorRate:

cvErrorRate:

0.3504274 0.3760684 0.3290598 0.2820513 0.2393162 0.1965812 0.2179487 0.2136752

seErrorRate:

0.0359811 0.0350716 0.0335795 0.031384 0.02832 0.0261317 0.0278346 0.0277808

classErrorRates:

goodPronosis: 0.3106061 0.3712121 0.3106061 0.2575758 0.2045455 0.1742424 0.1969697 0.1969697

poorPronosis: 0.4019608 0.3823529 0.3529412 0.3137255 0.2843137 0.2254902 0.245098 0.2352941

=> bestOptionValue: 32 (Est. Error rate: 0.1965812)

executionTime: 11.422s

11

No Results for 2 layers external CV

Final Classifier has not been computed yet

From this display we get the key results of the one-layer cross-validation. For more details on how
to get the complete results of this cross-validation, you can have a look at section 4. Here we can infer
that the best size of subset is 8 with an error rate of 0.4. The cross-validated error rates for subsets of
size 1,2,4,8,16,20 are respectively 0.7 0.6 0.6 0.4 0.6 0.6. The standard errors of these cross-validated
error rates are respectively 0.0460566 0.0492366 0.0492366 0.0492366 0.0492366 0.0492366. These are
calculated by treating the cross-validation error rate as the average of the error rates on each fold. This
display also provide the error rate for each class. As we know from [5], [8] and [7], the best error rate is
biased and two-layer of cross-validation must be computed to get a unbiased estimate.

3.4.2 two-layer Cross Validation

As a reminder, let's just state that two-layer cross-validation aims to assess the best error rate of a
classi�er using feature selection in an appropriate manner. At the end of this step we will get an
estimate of the best error rate that we can compute using our test set. Since all the options have already
been chosen via the experiment object, the command to start the two-layer cross-validation is trivial.

> myExperiment <- runTwoLayerExtCV(myExperiment)

One the previous command has been run, we can look again at our experiment, the result of two-layer
cross-validation has been updated.

> experiment

noFolds1stLayer:9

noFolds2ndLayer:10

classifierName:svm (svmKernel: linear)

typeFoldCreation:original

noOfRepeats:3

featureSelectionOptions

optionValues: 1 2 4 8 16 32 64 70 (maxSubsetSize: 70, speed:high, noOfOptions:8)

dataset

dataId

vantVeer_70

dataPath: use 'getDataPath(object)'

geneExprFile: use 'getGeneExprFile(object)'

classesFile: use 'getClassesFile(object)'

eset: use 'getEset(object)'

resultRepeated1LayerCV

original1LayerCV: 3 combined 1 layer 10-folds CV: use 'getOriginal1LayerCV(object)'

summaryFrequencyTopGenes: use 'getFrequencyTopGenes(object)'

summaryErrorRate:

cvErrorRate:

0.3504274 0.3760684 0.3290598 0.2820513 0.2393162 0.1965812 0.2179487 0.2136752

seErrorRate:

0.0359811 0.0350716 0.0335795 0.031384 0.02832 0.0261317 0.0278346 0.0277808

classErrorRates:

goodPronosis: 0.3106061 0.3712121 0.3106061 0.2575758 0.2045455 0.1742424 0.1969697 0.1969697

poorPronosis: 0.4019608 0.3823529 0.3529412 0.3137255 0.2843137 0.2254902 0.245098 0.2352941

=> bestOptionValue: 32 (Est. Error rate: 0.1965812)

executionTime: 11.422s

resultRepeated2LayerCV

original2LayerCV: 3 combined 2 layer 10-folds CV: use 'getOriginal2LayerCV(object)'

12

summaryErrorRate:

finalErrorRate:

0.2013024

seFinalErrorRate:

0.0323111

classErrorRates:

goodPronosis: 0.1515152

poorPronosis: 0.2941176

=> avgBestOptionValue: 37.86667 (Est. Error rate: 0.2013024)

executionTime: 111.692s

Final Classifier has not been computed yet

From this display we get the key results of the two-layer cross-validation. For more details on how
to get the complete results of this cross-validation, you can have a look at section 4. Here we can infer
that the estimate of the best error rate that we can get is 0.7 for an average value of subset size of 5.7.

3.5 Classify new samples

Another simple method allow us to classify new samples based on our dataset. The �nal classi�er is
trained on the whole dataset. By default, it is inferred by considering only the genes obtained by feature
selection with the best value of option (size of subset for RFE-SVM or threshold for NSC) found in
one-layer cross-validation. You can instead select your favorite option (number of genes or threshold)
by specifying it in the arguments. Three steps are involved for the classi�cation or one more more
samples. First, you must pre-process your raw data as in section 3.2.2 to get a �le containing the gene
expression values in which each column corresponds to a sample and each line to a gene. The �rst row
must contain the names of the new samples and the �rst column the names of the genes. Second, the
�nal classi�er must be trained on the whole dataset using only the relevant genes by calling the method
findFinalClassifier.

> myExperiment <- findFinalClassifier(myExperiment)

Once the �nal classi�er has been trained we can try it on new samples. Let's use the following �le
names vV_NewSamples.txt, that contains the gene expression values of four new samples.

S1new S2new S3new S4new

211316_x_at 0.238549585 0.309818611 0.039801616 0.185127978

201947_s_at 0.062913738 0.348206391 0.049101993 0.018549661

208018_s_at 0.214811858 0.310358253 0.90570071 0.117063616

208884_s_at 0.116130479 0.105216261 0.413862903 0.364270183

218251_at 0.110915852 0.082847135 0.05732792 0.250266178

220712_at 0.156955443 0.018847956 0.22558974 0.058140084

34764_at 0.163686223 0.066543884 0.136281185 0.164491474

217754_at 0.166883529 0.030785639 0.583919806 0.076886967

221938_x_at 0.003795356 0.017734243 0.142946003 0.073167907

209492_x_at 0.13303862 0.063216618 0.031262267 0.089941499

211596_s_at 0.070772013 0.186176953 0.119515381 0.30368565

221925_s_at 0.179151366 0.047201722 0.240400082 0.298616043

200804_at 0.184900824 0.148434291 0.154408075 0.162802706

206529_x_at 0.432168595 0.405113542 0.350297917 0.344634651

213224_s_at 0.195566057 0.021122683 0.04348983 0.341574279

215628_x_at 0.114695588 0.013643621 0.173638361 0.006354456

211362_s_at 0.111345205 0.078990291 0.315260021 0.330167423

221058_s_at 0.133462748 0.011197787 0.278062554 0.134014777

210381_s_at 0.013173383 0.032487425 0.203678868 0.118008774

216989_at 0.395635336 0.073903352 0.006366366 0.038050583

13

The classi�cation task is started by calling classifyNewSamples. If the argument

> classifyNewSamples(myExperiment,

newSamplesFile="pathToFile/vV_NewSamples.txt")

V1 V2 V3 V4 V5 V6

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V7 V8 V9 V10 V11 V12

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V13 V14 V15 V16 V17 V18

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V19 V20 V21 V22 V23 V24

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V25 V26 V27 V28 V29 V30

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V31 V32 V33 V34 V35 V36

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V37 V38 V39 V40 V41 V42

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V43 V44 V45 V46 V47 V48

goodPronosis goodPronosis poorPronosis poorPronosis poorPronosis poorPronosis

V49 V50 V51 V52 V53 V54

poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis

V55 V56 V57 V58 V59 V60

poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis

V61 V62 V63 V64 V65 V66

poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis

V67 V68 V69 V70 V71 V72

poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis

V73 V74 V75 V76 V77 V78

poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis poorPronosis

Levels: goodPronosis poorPronosis

> classifyNewSamples(myExperiment,

newSamplesFile="pathToFile/vV_NewSamples.txt",

optionValue=1)

V1 V2 V3 V4 V5 V6

goodPronosis poorPronosis goodPronosis poorPronosis goodPronosis goodPronosis

V7 V8 V9 V10 V11 V12

goodPronosis goodPronosis goodPronosis poorPronosis goodPronosis goodPronosis

V13 V14 V15 V16 V17 V18

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V19 V20 V21 V22 V23 V24

goodPronosis poorPronosis goodPronosis goodPronosis goodPronosis poorPronosis

V25 V26 V27 V28 V29 V30

goodPronosis poorPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V31 V32 V33 V34 V35 V36

goodPronosis goodPronosis goodPronosis goodPronosis poorPronosis goodPronosis

V37 V38 V39 V40 V41 V42

goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis goodPronosis

V43 V44 V45 V46 V47 V48

poorPronosis poorPronosis poorPronosis goodPronosis poorPronosis poorPronosis

V49 V50 V51 V52 V53 V54

poorPronosis poorPronosis poorPronosis goodPronosis poorPronosis goodPronosis

V55 V56 V57 V58 V59 V60

goodPronosis poorPronosis poorPronosis poorPronosis poorPronosis goodPronosis

V61 V62 V63 V64 V65 V66

goodPronosis goodPronosis poorPronosis goodPronosis poorPronosis poorPronosis

14

V67 V68 V69 V70 V71 V72

poorPronosis poorPronosis poorPronosis goodPronosis poorPronosis poorPronosis

V73 V74 V75 V76 V77 V78

poorPronosis poorPronosis poorPronosis goodPronosis poorPronosis goodPronosis

Levels: goodPronosis poorPronosis

The vector returned contains the predicted class for each new sample.

15

Chapter 4

Access the results of one-layer and

two-layer cross-validation

4.1 Introduction

When a one-layer or a two-layer cross-validation is run, the key results are printed out on screen. How-
ever, you might want to get more details about your run. This is possible via the call of the method
getResults. This method has been designed to be a user-friendly interface to the complex class structure
which assure the storage of the results of one-layer and two-layer cross-validation.

4.2 Argument of the method getResults

The method getResults has two main arguments: layer which speci�es which layer of cross-validation
is concerned and topic which speci�es which piece of information is needed. There are also two optional
arguments errorType and genesType that precise the scope of the topic arguments. The argument
layer can take the following values:

• 1: Access to the one-layer external cross-validation

• 1,i: Access to the ith repeat of the one-layer external cross-validation

• 2: Access to the two-layer external cross-validation

• 2,i: Access to the ith repeat of the two-layer external cross-validation

• 2,i,j: Access to the jth inner one-layer cross-validation of the ith repeat of the two-layer external
cross-validation

• 2,i,j,k: Access to the kth repeat of the jth inner one-layer cross-validation of the ith repeat of the
two-layer external cross-validation

The argument topic can take the following values:

• `errorRate': Access to the error rates related to the selected layer of cross-validation. The optional
argument errorType can be used in conjunction with this topic.

• `genesSelected': Access to the genes selected in to the selected layer of cross-validation. The
optional argument genesType can be used in conjunction with this topic.

• `bestOptionValue': Access to the best option value (best number of genes for RFE-SVM or best
thresholds for NSC) in the selected layer. This value can be an average.

• `executionTime': Access to the time in second that was necessary to compute the selected layer.

16

4.3 Error rates

4.3.1 Optional argument errorType

Di�erent information on the error rates are available and can be speci�ed with the arguments errorType:

• `all' or missing: Access to all the following values.

• `cv': Access to the cross-validated error rate.

• `se': Access to the standard error on the cross-validated error rate.

• `fold': Access to the error rate in each fold.

• `noSamplesPerFold': Access to the number of samples per fold.

• `class': Access to the error rate in each class.

The previous options are not available for all the types of layers. For instance, Since the repeated
one-layer cross-validation is a summary of several repeats of one-layer cross-validation, we don't have a
fold error rate. The following table describes which option is available for each kind of layer.

Table 4.1: genesType available for each type of layer

layer argument `all' `cv' `se' `fold' `noSamplesPerFold' `class'
1 Yes Yes Yes No No Yes
1,i Yes Yes Yes Yes Yes Yes
2 Yes Yes Yes No No Yes
2,i Yes Yes Yes Yes Yes Yes
2,i,j Yes Yes Yes No No Yes
2,i,j,k Yes Yes Yes Yes Yes Yes

4.3.2 Examples

All the information on error rates for the repeated one-layer CV

getResults(myExperiment, 1, topic='errorRate')

Cross-validated error rates for the repeated one-layer CV: Une value

per size of subset

getResults(myExperiment, 1, topic='errorRate', errorType='cv')

Cross-validated error rates for the repeated two-layer CV: Une value

only corresponding to the best error rate

getResults(myExperiment, 2, topic='errorRate', errorType='cv')

4.4 Genes selected

4.4.1 Optional argument genesType

Di�erent information on the genes selected are available and can be speci�ed with the arguments
genesType:

• missing: Access to one of the following values (by default `frequ' if available).

• `fold': Access to the list of genes selected in each fold (and for each size of subset or threshold if
relevant).

• `frequ': Access to the genes selected order by their frequency along the folds and the repeats.

The previous options are not available for all the types of layers. For instance, Since the repeated
one-layer cross-validation is a summary of several repeats of one-layer cross-validation, we don't have the
genes selected in each fold. The following table describes which option is available for each kind of layer.

17

Table 4.2: errorType available for each type of layer

layer argument `fold' `frequ'
1 No Yes
1,i Yes Yes
2 No Yes
2,i Yes Yes
2,i,j No Yes
2,i,j,k Yes Yes

4.4.2 Examples

Frequency of the genes selected among the folds and repeats

of the one-layer CV

getResults(myExperiment, c(1,1), topic='genesSelected', genesType='frequ')

Genes selected for the 3rd size of subset in the 2nd fold of the

second repeat of one-layer external CV

getResults(myExperiment, c(1,2), topic='genesSelected', genesType='fold')[[3]][[2]]

4.5 Best value of option

4.5.1 Overview

This topic gives access to the best values of option (best size of subset or best threshold) for a given
layer.

4.5.2 Examples

Best number of genes in one-layer CV

getResults(myExperiment, 1, topic='bestOptionValue')

Best number of genes in the third repeat of one-layer CV

getResults(myExperiment, c(1,3), topic='bestOptionValue')

Average (over the folds), best number of genes in the two-layer CV

getResults(myExperiment, 2, topic='bestOptionValue')

Average (over the folds), best number of genes in the

third repeat of the two-layer CV

getResults(myExperiment, c(2,3), topic='bestOptionValue')

4.6 Execution time

4.6.1 Overview

This topic gives access to the execution time needed to compute a given layer.

4.6.2 Examples

Execution time to compute the repeated one-layer CV

getResults(myExperiment, 1, topic='executionTime')

Execution time to compute the third repeat of the repeated one-layer CV

getResults(myExperiment, c(1,3), topic='executionTime')

Execution time to compute the repeated two-layer CV

getResults(myExperiment, 2, topic='executionTime')

Execution time to compute the second repeat of the repeated two-layer CV

getResults(myExperiment, c(2,2), topic='executionTime')

18

Chapter 5

Plots and graphics

This package also provide three methods to plot the results of the one-layer and two-layer cross-validation.
plotErrorsSummaryOneLayerCV and plotErrorsRepeatedOneLayerCV plot the cross-validated error
rate obtained during the one-layer cross-validation and plotErrorsFoldTwoLayerCV plot the fold er-
ror rates obtained in the second layer of two-layer cross-validation.

5.1 Plot the cross-validated error rates of one-layer cross-validation

5.1.1 Plot the summary error rate only

Concerning the one-layer cross-validation, the method plotErrorsSummaryOneLayerCV plots the cross-
validated error rate averaged over the repeats versus the number of genes (for SVM-RFE) or the value of
the thresholds (for NSC). An example of code is given below and �gure 5.1.1 presents the corresponding
plot.

plotErrorsSummaryOneLayerCV(myExperiment)

Figure 5.1: One-layer cross-valiadtion: plot of the summary cross-validated error rate

5.1.2 Plot the summary error rate only

Concerning the one-layer cross-validation, the method plotErrorsRepeatedOneLayerCV plots the cross-
validated error rate averaged over the repeats and the cross-validated error rate obtained for each repeat

19

versus the number of genes (for SVM-RFE) or the value of the thresholds (for NSC). An example of code
is given below and �gure 5.1.2 presents the corresponding plot.

plotErrorsRepeatedOneLayerCV(myExperiment)

Figure 5.2: One-layer cross-validation: plot of the summary cross-validated error rate and the cross-
validated error rate in each repeat

5.2 Plot the fold error rates of two-layer cross-validation

5.2.1 Plot the summary error rate only

Concerning the two-layer cross-validation, the method plotErrorsFoldTwoLayerCV plots the fold error
rates in the second layer versus the number of genes (for SVM-RFE) or the value of the thresholds (for
NSC). An example of code is given below and �gure 5.2.1 presents the corresponding plot.

plotErrorsFoldTwoLayerCV(myExperiment)

20

Figure 5.3: Two-layer cross-validation: plot of fold error rates

21

Bibliography

[1] C. Ambroise and G.J. McLachlan. Selection bias in gene extraction on the basis of microarray gene-
expression data. Proceedings of the National Academy of Sciences of the United States of America,
99(10):6567�6572, 2002.

[2] P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated
learning-testing methods. Biometrika, 76(3):503�514, 1989.

[3] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classi�cation using support
vector machines. Machine Learning, 46(1-3):389�422, 2002.

[4] G.J. McLachlan, J. Chevelu, and J. Zhu. Correcting for selection bias via cross-validation in the
classi�cation of microarray data. Beyond Parametrics in Interdisciplinary Research: Festschrift in
Honour of Professor Pranab K. Sen, N. Balakrishnan, E. Pena, and M.J. Silvapulle (Eds.). Hayward,
California: IMS Collections, 1:383�395, 2008.

[5] M. Stone. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser.,
B(36):111�147, 1974.

[6] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proceedings of the National Academy of Sciences of the United States
of America, 99(10):6567�6572, 2002.

[7] I.A. Wood, P.M. Visscher, and K.L. Mengersen. Classi�cation based upon gene expression data: bias
and precision of error rates. Bioinformatics, 23(11):1363�1370, 2007.

[8] J.X. Zhu, G.J. McLachlan, L. Ben-Tovim, and I. Wood. On selection biases with prediction rules
formed from gene expression data. Journal of Statistical Planning and Inference, 38:374�386, 2008.

22

