Absorbing Markov Processes

The problem we will consider relates to Markov processes in
continuous time on a countable state spé&c&Ve recall that
the fundamental analytical tool for such processes is #dre tr
sition functionP(t) = (p;;(t), 7,7 € S,t > 0), wherep;;(?)
represents the probability that the process, having stante
state:, IS In state; after elapsed timé. However we rarely
know the transition function explicitly and must extractath
Information we can out of the so-callgematrix of transition
rates:Q = (¢;; = p;;(07), 4,5 € S). Here we will assume
that we are given a stable conservative g-mafisatisfy-
Ing qo; = 0 for all j € S (so that state zero Is absorbing)
and for which the remaining statés = S \ {0} comprise
an irreducible transient class. In addition we assume bmat t
absorbing state is reached with probability one. We wiletak
C to be either{1,2,..., N} or {1,2,...} according as we
requireS to be finite or countably Infinite.

Birth-Death Processes

We also recall that a Markov process on a subset of the
Integers Is called a birth-death procesg;jf = 0 whenever
i — j| > 1. As usual we denote the ‘birth rateg);;; by A,
the ‘death ratesg; ;_; by ;. To ensure that we have the de-
sired class structure in the state space, we must kave0
and both\; andy; positive for all: > 1. The simple structure
of birth-death processes means that they submit to analysis
rather more easily than more general processes. In addition
to this, a great many of the Markov chain models used In
practice are In fact birth-death processes.

The Decay Parameter

The decay parameter Is a very important quantity in the study
of absorbing Markov processes. It can be defined by the limit
Ao = lim —t~ log(py;(t)),

t—00

which exists and is the same for allj € C [2]. The decay
parameter Is of central importance In the theory of quasi-
stationary and limiting conditional distributions (in fabe
precise value Is not so important here, only whether it is pos
itive or zero), but we will be particularly interested in kb
cause If an absorbing Markov process has its quasi-stagiona
distribution as its initial distribution, then the time tbsorp-
tion, Is exponentially distributed with parameter.

This makes the decay parameter a quantity of great inter-
est to those who use absorbing Markov processes in mod-
elling, for example epidemiologists and population ecolo-
gists. Unfortunately the decay parameter is notorioudhy di
cult to evaluate or even approximate and this has led to con-
siderable effort being devoted to the task of approximating
the decay parameter for several particular models which are
useful in applications, usually in the guise of the expected
time to extinction starting in the quasi-stationary disiition
— the recipocal of\..
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Although it Iis in general not possible to evaluate the decay
parameter of an absorbing Markov process, there are some
partial results for birth-death processes. van Doorn [végg)i
some variational formulae for the decay parameter from whic
he obtains upper and lower bounds, but getting good bounds
requires a good approximation of the quasi-stationaryieist
bution, which Is rarely available. A major advance Is pro-
vided by Chen [1], who gives upper and lower bounds for
the decay parameter of a general birth-death process which
always differ by a factor of four.

Theorem (Chen [1])Suppose that a birth-death process on
the state spacg)} U {1,2,..., N} has birth and death rates
(A, 1<t < N-—-1)and(y;, 1 << N), and putr; = 1
andﬂ'@' 322 )\j_l/,uj, 2 <1< N. Now define

N
}%n:: (1+ : ) EE:ﬂ}
H1

)\iﬂi 1=n
andS = max;<,<y R,. Then(4S) ! < \o < S

nil

1=1

We note that Chen’s result is in fact for birth-death pro-
cess on the infinite state spafe 2, ...}, where but for N’
being replaced byco’ and ‘max’ by ‘sup’, the formulae re-
main the same. From this immediately follows the corollary
that \c > 0 If and only if sup R,, < oo, both of which are
trivially true whenN < .

We will compare the bounds given by the above theorem
with approximations derived by &éell for the well-known
stochastic logistic or SS epidemic model, which is a birth-
death process of = {0} U {1,2,..., N} with birth and
death rates

i

Ai
N

(N —12) and p; = .

Nasell has refined his methods in a series of papers, the
most recent being [3] which contains a good survey of the
problem of approximating the quasi-stationary distribati
and the expected time to extinction both from quasi-statioy
and from a fixed state, for the stochastic logistic model.

Numerical Results

We observe and compare the behaviour of the approxi-
mations of the decay parameter obtained using Matlab im-
plementations of both &kell's methods, the bounds of The-
orem 1 relative to the true value calculated using Matlab’s
ei gs routine. In line with Nasell we focus our attention on
the more interesting parameter values= \/u > 1, when
the process usually remains extant for long periods of time

before being absorbed, and also observe that the behaviour

of the approximations and bounds appears to depena on
and . only throughgR.
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Figure 1: Relative bounds and approximations both for fiXezhd
varying N, and for fixed/V and varyingR.

Further Numerical Results and
Discussion

We can see from Figure 1 that botladell’s approximations
and the upper bound of Theorem 1 become better approxi-
mations for the decay parameter as bathand R become
larger. We have also observed that the relative behaviour of
the approximations and bounds appears to dependanmd

1 almost exclusively through their rati@.

In particular, on both plots in Figure 1 it seems that the
upper bound is a better approximation to the decay parameter
than Nasell's approximation. In addition, Figure 2 shows a
large region in(N, R)-space where the relative error of the
upper bound (as an approximation)of) is less than (0.
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Figure 2: A contour plot of the rati§ /..
The contours are for the values 2, 1.5, 1.25, 1.1, 1.01 arid 1.0

Using the upper bound as an approximation also offers
the distinct advantage of being sure that we are overestimat
INg A, which from the applied perspective means underesti-
mating the time to extinction from gquasi-stationarity. Esp
cially in an ecological setting, this Is far preferable teepv
estimating the extinction time, as an underestimate result
a more conservative assessment of a populations viability.

The bounds given Iin Theorem 1 are thus likely to be of
significant interest to modellers using absorbing birtatde
processes as they give accurate approximations of the decay
parameter, with errors known to be negative.
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