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The problem

Often the most appropriate model for a stochastic system is

that of a discrete-state Markov process.

In general, we can only observe the state of the process at

successive, not necessarily equally-spaced, time points.

How can we estimate the parameters of our model from such

observational data?

Epidemiological modelling example

The stochastic SIS (susceptible-infective-susceptible) logistic

model is appropriate for modelling the spread of infections

• that do not confer any long lasting immunity, and

• where individuals become susceptible again after infection.

It is a continuous-time Markov chain (m(t), t ≥ 0) taking val-

ues in S = {0,1, . . . , N} with non-zero transition rates

q(m, m + 1) = λm
N

(N − m) , m = 1, . . . , N − 1,

q(m, m − 1) = µm, m = 1, . . . , N,

where λ, the per-interaction rate of infection, and µ, the per-

individual rate of recovery, are both positive.

• Commonly we only know the number of people who are in-

fected at successive, and not necessarily equally-spaced,

time points.

• How do we estimate λ and µ, and the basic reproduction

ratio R0 = λ/µ, from such observational data?

General approach

• Calculate the exact likelihood of observing the given data.

• Use a numerical search algorithm to compute the maxi-

mum likelihood estimators.

• The exact likelihood cannot usually be evaluated explicitly,

so it must be computed numerically.

This combination provides a useful tool for fitting continuous-

time Markov chains to real systems, but is computationally

infeasible if the parameter space or the maximum population

size is large.

Approximation approach

One way to achieve an approximate likelihood is to use diffu-

sion approximations. If our model is density-dependent, that is

the transition rates take the form

qN(m, m + l) = Nf
(m

N
, l

)
, l 6= 0,

for a suitable function f , then we may derive a deterministic

approximation and a Gaussian diffusion approximation for the

density process m(t)/N , as N becomes large.

When the deterministic approximation has an asymptotically

stable fixed point, we can accurately model the fluctuations

of the density process about this fixed point by an Ornstein-

Uhlenbeck (OU) process. The likelihood of an OU process is

simply a Gaussian distribution.

Thus, we may approximate the exact likelihood by a Gaus-

sian distribution, resulting in a substantial decrease in com-

putational complexity.

Results

Comparison of the General Approach to the Approximation

Approach for the stochastic SIS logistic model with N = 50

(number of individuals), λ = 0.8 (per-interaction rate of infec-

tion) and µ = 0.4 (per-individual rate of recovery) and using

one set of n = 40 observations:

n = 40 λ̂ µ̂

General Approach 1.14739 0.566294

Approximation Approach 1.10432 0.552027

Note that the maximum population size is small in the above

comparison. When N is increased to 2000, where the Gen-

eral Approach is infeasible, and the estimates produced by the

Approximation Approach improve:

n = 40 λ̂ µ̂

Approximation Approach 0.905564 0.447709

Our new method provides reasonably accurate estimates

of parameters, in particular, when the maximum population

size is large. This is precisely the situation in which the

General Approach becomes infeasible, and thus the methods

presented complement each other.
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