

Tail-adaptive financial modeling with the GSHD

Jean Hu¹, Olena Kravchuk²

¹Nortwestern University, USA, ²University of Queensland, Australia

E-mail: J-Hu@northwestern.edu o.kravchuk@uq.edu.au

The generalized secant hyperbolic distribution (GSHD) has been studied recently as a modeling tool in financial data analysis. The GSHD is completely specified by location, scale and shape parameters. We demonstrate that the shape parameter may be understood as a tail weight parameter of the distribution, and introduce a three-class classification procedure based on various estimators of the tail weight of the GSHD. We illustrate the classification with large-sample examples of financial applications.

The GSHD is a location-scale family of unimodal symmetric distributions that includes the Cauchy and the uniform distributions as its limiting heavy-tail and light-tail cases. A member of the distribution is completely specified by the location, μ , scale, σ , and shape, t, parameters. The GSHD is a promising modeling tool for asset returns. Several computationally attractive estimators of location are available for this distribution for the location (or regression) problem. These estimators retain a high efficiency within wide ranges of the shape parameter. It is thus possible to introduce an adaptive estimation procedure based on a good shape classifier. It was shown elsewhere that the shape parameter may be understood as a tail weight parameter.

We suggest using the Hogg's, T, and Brys's, LQW, tail classifiers:

$$T = \frac{X_{0.975} - X_{0.025}}{X_{0.875} - X_{0.125}}, \qquad LQW_{0.125} = -\frac{X_{(1-0.125)/2} + X_{0.125/2} - 2X_{0.25}}{X_{(1-0.125)/2} - X_{0.125/2}}$$

where $X_{(.)}$ are the sample percentiles.

The poster is presented at IBC'06, Montreal, Canada.

Abstract

Introduction

Tail classifiers

A selection procedure may be based on either the T or LQW estimator or on a combination of both.

 $T \ge 2.035 (LQW_{0.125} \ge 0.352),$ $1.467 < T < 2.035 (0.142 < LQW_{0.125} < 0.352)$, normal-tailed, i.e. $-\pi/2 < t \le 2\pi (-\pi/2 < t \le 3\pi/2)$, $T \leq 1.467 \, (LQW_{0.125} \leq 0.142),$

GARCH(1,1) residuals are assumed to follow the GSHD.

Asset Return	n	$\mathbf{t}_{\mathrm{MLE}}$
Natural Gas 1-month Ftr	3060	-1.63159
Natural Gas 2-month Ftr	3060	-1.53159
Natural Gas 3-month Ftr	3060	-1.93159
2008 Spread	1393	1.4384
2008 Nom	1434	1.498
2008 TIPS	1393	-1.9116

Likelihood surface

The GSHD may be a relevant distributional assumption for finance econometric models. Its flexibility in capturing heterogenous shapes of asset returns is very attractive. For instance, very heavy-tailed data such as those that come from a Cauchy distribution can be approximated by the GSHD, which has the advantage that all moments are finite. A possible direction for our future research is testing nonzero skewness detected in the empirical portion of our current study.

Centre of Excellence for Mathematics and Statistics of Complex Systems

Adaptive procedures

heavy-tailed, i.e. $-\pi < t \leq -\pi/2$, light-tailed, i.e. $t > 2\pi (t > 3\pi/2)$.

Finance series example

Conclusions