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Options, the basics

• Gives the holder the right to something, without the
obligation.

• European Call Option: The right, but not obligation, to
buy a share at a specified price(the strike) and time.

• Used to manage risk. Used in currencies markets,
commodities such as oil, electriricy...

• Managed funds/superannuation funds use puts to
protect against stock declines(I hope!).

• There are many different types of options, European,
American, Asian, Bermudan, Australian, Lookback,
Barrier, Spread, Options on Options .....and the list
continues to grow all the time as people want new
products to manage their risk.



Options, the basics

• Gives the holder the right to something, without the
obligation.

• European Call Option: The right, but not obligation, to
buy a share at a specified price(the strike) and time.

• Used to manage risk. Used in currencies markets,
commodities such as oil, electriricy...

• Managed funds/superannuation funds use puts to
protect against stock declines(I hope!).

• There are many different types of options, European,
American, Asian, Bermudan, Australian, Lookback,
Barrier, Spread, Options on Options .....and the list
continues to grow all the time as people want new
products to manage their risk.



Options, the basics

• Gives the holder the right to something, without the
obligation.

• European Call Option: The right, but not obligation, to
buy a share at a specified price(the strike) and time.

• Used to manage risk. Used in currencies markets,
commodities such as oil, electriricy...

• Managed funds/superannuation funds use puts to
protect against stock declines(I hope!).

• There are many different types of options, European,
American, Asian, Bermudan, Australian, Lookback,
Barrier, Spread, Options on Options .....and the list
continues to grow all the time as people want new
products to manage their risk.



Options, the basics

• Gives the holder the right to something, without the
obligation.

• European Call Option: The right, but not obligation, to
buy a share at a specified price(the strike) and time.

• Used to manage risk. Used in currencies markets,
commodities such as oil, electriricy...

• Managed funds/superannuation funds use puts to
protect against stock declines(I hope!).

• There are many different types of options, European,
American, Asian, Bermudan, Australian, Lookback,
Barrier, Spread, Options on Options .....and the list
continues to grow all the time as people want new
products to manage their risk.



Options, the basics

• Gives the holder the right to something, without the
obligation.

• European Call Option: The right, but not obligation, to
buy a share at a specified price(the strike) and time.

• Used to manage risk. Used in currencies markets,
commodities such as oil, electriricy...

• Managed funds/superannuation funds use puts to
protect against stock declines(I hope!).

• There are many different types of options, European,
American, Asian, Bermudan, Australian, Lookback,
Barrier, Spread, Options on Options .....and the list
continues to grow all the time as people want new
products to manage their risk.



European Call, VT = max(ST − K, 0)

The strike price, K, is $105



European Call, VT = max(ST − K, 0)

The strike price, K, is $105

50 60 70 80 90 100 110 120 130
−5

0

5

10

15

20

25

30

35

40

Stock Price $

O
pt

io
n 

V
al

ue
 $



European Call, VT = max(ST − K, 0)

The strike price, K, is $105

50 60 70 80 90 100 110 120 130
−5

0

5

10

15

20

25

30

35

40

Stock Price $

O
pt

io
n 

V
al

ue
 $

Time to expiry=1
Final Payoff



European Call, VT = max(ST − K, 0)

The strike price, K, is $105

50 60 70 80 90 100 110 120 130
−5

0

5

10

15

20

25

30

35

40

Stock Price $

O
pt

io
n 

V
al

ue
 $

Time to expiry=0.5
Final Payoff



European Call, VT = max(ST − K, 0)

The strike price, K, is $105

50 60 70 80 90 100 110 120 130
−5

0

5

10

15

20

25

30

35

40

Stock Price $

O
pt

io
n 

V
al

ue
 $

Time to expiry=0.3
Final Payoff



European Call, VT = max(ST − K, 0)

The strike price, K, is $105

50 60 70 80 90 100 110 120 130
−5

0

5

10

15

20

25

30

35

40

Stock Price $

O
pt

io
n 

V
al

ue
 $

Time to expiry=0.1
Final Payoff



European Call, VT = max(ST − K, 0)

The strike price, K, is $105
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European Call, VT = max(ST − K, 0)

• Closed form solution published by Black and Scholes in
1973

C = S0N(d1) − Ke−rT N(d2)

with

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√

T
, d2 =

ln(S0/K) + (r − σ2/2)T

σ
√

T

where K is the strike price, S0 is the price of the share at
time 0, σ is the share’s volatility,T the time to expiry and
N(·) is the cumulative probability function.

• Assumes stock evolves as Geometric Brownian motion,
dS = µSdt + σSdW (Log normal)

• The solution, remarkably, does not contain drift of the
stock
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Asian Option,VT =

(
1
T

∫ T

0
Svdv − k

)+

• Similar to my option is most like this one
• Cheaper than vanilla call or put.
• At the money it is about half the cost of a European. In

fact volatility is about σ√
3
. Price is simply

r∗ = r − 1
2(r − σ2

6 ) and σ∗ = σ√
3

into the BS for the price of
a Geometric Asian Option

• Very popular in currency and commodity markets



A Volume Weighted Average
Price

• Assigns more weight to periods of heavy trading, than
light trading

• Example: Suppose a stock trades at $10 today and there
are 100 trades, tomorrow it trades at $100 and there is 1
trade.
The volume weighted average price is
$10×100+$100×1

100+1 = $10.89

while a arithmetic weighted average price is
$10+$100

2 = $55.00.
• We can write the VWAP at time T as

V WAP (T ) =
T

0
SvUvdv

T

0
Uvdv

Where St is the price of the stock at time t and
Ut is the rate of trades of the stock at time t.
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My Problem

To price and hedge

• VT = max

(

�

T

0
SvUvdv

�

T

0
Uvdv

− K, 0

)
(fixed strike) and

• VT = max

(
T

0
SvUvdv

T

0
Uvdv

− ST , 0

)
(floating strike)

with S and U being defined by the stochastic differential
equations

• dS = rSdt + σSdW1 (stock)
• dU = α(µ − U)dt + βUdW2 (trades per unit time), (Use

several mean reverting models, add jumps later)

For the moment assume correlation between W1 and W2 is
zero, relax this assumption later once we know the problem
better.
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My Problem

To price and hedge
• PDE method has 4 state variables, not realistic to solve

• Probabilistic approach requires us to evaluate an
expectation for which we do not know the PDF

• Can solve by Monte Carlo, but slow.
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An approximation

• Inspired by early work, on Asian options, assume that the volume
weighted average price

∫ T

0
SvUvdv

∫ T

0
Uvdv

(1)

has a log normal distribution at the final time.

• We know
dS̃ = µ̃S̃dt + σ̃S̃dW

has a log normal distribution,

• So all we need to do is find µ̃ and σ̃ which will match the
expectation and variance of (1) and then we will have a pretty
standard equation to solve.

• But how do we get these???
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Approximations

• We write the VWAP as

�

T

0
SvUvdv

�

T

0
Uvdv

= Y
Z

• Simple approximations to the expectation and variance
of Y

Z
where Y and Z are random variables.

•

E

(
Y

Z

)
≈

E(Y )

E(Z)
−

Cov(Y,Z)

(E(Z))2
+

E(Y )

(E(Z))3
V ar(Z)

•

V ar

(
Y

Z

)
≈

(
E(Y )

E(Z)

)2 (
V ar(Y )

(E(Y ))2
+

V ar(Z)

(E(Z))2
− 2

Cov(Y,Z)

E(Y )E(Z)

)

, Mood, Graybill & Boes (1974).
• Thats all great, but how do we get all these

expectations?
• From the Ito-Doeblin formula, and lots of patience
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The Doeblin in the Ito-Doeblin for-
mula

Shreve (2004)



Now back to the problem

• We need many expectations.

• We can find all these expectations from properties of the
Ito integral.
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Demonstrate the method on E(St)

We have dS = µSdt + σSdW

This is really shorthand for

St − S0 =

∫ t

0
µSνdν +

∫ t

0
σSνdWν

Taking the expectation of this we have

E(St − S0) = E(

∫ t

0
µSνdν +

∫ t

0
σSνdWν)

Now the expectation of an Ito integral is 0, so we have

E(St − S0) = E(

∫ t

0
µSνdν)



Demonstrate the method on E(St)

We have dS = µSdt + σSdW
This is really shorthand for

St − S0 =

∫ t

0
µSνdν +

∫ t

0
σSνdWν

Taking the expectation of this we have

E(St − S0) = E(

∫ t

0
µSνdν +

∫ t

0
σSνdWν)

Now the expectation of an Ito integral is 0, so we have

E(St − S0) = E(

∫ t

0
µSνdν)



Demonstrate the method on E(St)

We have dS = µSdt + σSdW
This is really shorthand for

St − S0 =

∫ t

0
µSνdν +

∫ t

0
σSνdWν

Taking the expectation of this we have

E(St − S0) = E(

∫ t

0
µSνdν +

∫ t

0
σSνdWν)

Now the expectation of an Ito integral is 0, so we have

E(St − S0) = E(

∫ t

0
µSνdν)



Demonstrate the method on E(St)

We have dS = µSdt + σSdW
This is really shorthand for

St − S0 =

∫ t

0
µSνdν +

∫ t

0
σSνdWν

Taking the expectation of this we have

E(St − S0) = E(

∫ t

0
µSνdν +

∫ t

0
σSνdWν)

Now the expectation of an Ito integral is 0, so we have

E(St − S0) = E(

∫ t

0
µSνdν)



Demonstrate the method on E(St)

Then moving the expectation inside the integral

E(St − S0) =

∫ t

0
µE(Sν)dν)

finally differentiating we have

dE(St)

dt
= µE(St)

which is simple to solve given the initial condition.
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Obtaining the expectations

• We can do this for all the expectations which we require,
it is long and tedious, but doable.

• Final system has 19 equations which are easy to solve in
Matlab or Maple

• Can now use the approximations

E

(
Y

Z

)
≈

E(Y )

E(Z)
−

Cov(Y,Z)

(E(Z))2
+

E(Y )

(E(Z))3
V ar(Z)

V ar

(
Y

Z

)
≈

(
E(Y )

E(Z)

)2 (
V ar(Y )

(E(Y ))2
+

V ar(Z)

(E(Z))2
− 2

Cov(Y,Z)

E(Y )E(Z)

)

to find the expectation and variance at any time T for

∫ T

0 SvUvdv
∫ T

0 Uvdv
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Eigenvalues

Eigenvalue Number of times occurring
2µ + σ2 1

2µ − 2α + σ2 + β2 1
2µ − α + σ2 1
µ − 2α + β2 1

β2 − 2α 1
µ 3

µ − α 3
−α 3
0 5

Lots of +ve eigenvalues, but the one to look out for is the com-

bination of β2 − 2α which appears in many places.



Now use the log normal approxi-
mation

Now we know that the expectation and variance of our
underlying dS̃ = µ̃Sdt + σ̃SdW are

•

E(S̃(t)) = S0e

�

µt and

V ar(S̃(t)) = S2
0e2

�

µt(e

�

σ2t − 1)

• We can rewrite these as

µ̃ =
1

t
log

E(S̃(t))

S0

σ̃ =

√
1

t
log

V ar(S̃(t)) + (E(S̃(t)))2

(E(S̃(t)))2
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How well does it work?
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PDF at final time for different σs
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PDF at final time for different σs
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PDF at final time for different σs
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PDF at final time for different σs
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PDF at final time for different σs
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PDF at final time for different σs
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PDF at final time for different σs
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PDF at final time for different σs

σ = 0.4

60 80 100 120 140 160 180
0

0.005

0.01

0.015

0.02

PDF for the VWAP, dS=0.15Sdt+0.4SdW
1
,  dU=100(110−U)dt+2UdW

2
 

s0=110, u0=200, time of VWAP is from 0 to 0.5, 2e7 Simulations, Time split up into 1e3 intervals

VWAP

Log Normal Fit From Emprical
Log Normal Fit From ODE
Empricial



Comments on Result

• Approximation is better for lower σ, which is not
unexpected - this method when applied to the normal
Asian option which makes an approximation to

∫ t

0 Sνdν is
only good for small σ.

• Approximation is bad for small times.
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Pricing the options

This is the easy part. We can easily obtain PDEs which
describe the option price from standard techniques

• Fixed strike(BC max(S̃T − K, 0))

∂V

∂t
+

1

2
(σ̃S̃)2

∂2V

∂S̃2
+ (µ̃ − λ(t, S̃)σ̃S̃)

∂V

∂S̃
− rṼ = 0

• Floating strike(BC max(ST − S̃T , 0))

∂V

∂t
+

1

2
(σS)2

∂2V

∂S2
+ ρσSσ̃S̃

∂2V

∂S∂S̃

+
1

2
(σ̃S̃)2

∂2V

∂S̃2
+ rS

∂V

∂S
+ (µ̃ − λ(t, S̃)σ̃S̃)

∂V

∂S̃
− rV = 0

• We could also price American options as well as exotic products
without too much more work? Ie Barrier, Lookback.....
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Solutions

• In the case that the market price of risk is constant, the
fixed strike has the analytic solution

Vfixed(0) = e(r−

�

µ+

�

σλ)T S(0)Φ(d1) − Ke−rT Φ(d2)

where

d1 = d2 + σ̃
√

T and

d2 =
log(S(0)/K) + (µ̃ − σ̃λ − 1

2 σ̃2)T

σ̃
√

T

where Φ(·) is the cumulative normal distribution function,
Benth (2004).

• Otherwise we must use a numeric technique such as
finite differences, Monte Carlo, FFT, etc
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An Example

Method demonstrated on the system

dS = 0.1Sdt + 0.5SdW1

dU = 100(110 − U)dt + 2UdW2

U0 = 200,K = 100, r = 10% and time from 0 to 0.5



An Example
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Share Purchase Plans

VT =

(
ST2

− D

�

T1

T0
SvUvdv

�

T1

T0
Uvdv

)+

,T1 − T0 typically 3-10 days, T2 − T1

typically 10-30 days, D a discount factor usually 70%-90%

• We can value this using the method just described.

• Raises capital easily, no prospectus

• Aimed at small investors, max $5000

• IAG, Suncorp, AMP

• We can immediately now say how much it is worth to participate in
a share purchase plan(Actually what the companies are giving
away for free!!)

• I am not suggesting you do this, but since they have given you this
payoff.....



Summary

• Have a way to price the option

• Can price exotics
• FAST
• Can use as a control variate in Monte Carlo
• Can tell you how much companies are giving to you

when they offer shares at a VWAP to you in a share
purchase plan.
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Future Work

• Find a region where this approximation is good is some
sense.

• Take more moments?
• Find a practical hedge
• More Monte Carlo
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