A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

Antony Stace

Department of Mathematics and MASCOS
University of Queensland
15th October 2004
Plan of talk

- What an option is
Plan of talk

- What an option is
- What an Asian Option is and more importantly what a Volume Weighted Average Price is Option
Plan of talk

• What an option is
• What an Asian Option is and more importantly what a Volume Weighted Average Price is Option
• Future work
Plan of talk

- What an option is
- What an Asian Option is and more importantly what a Volume Weighted Average Price is Option
- Future work
- Questions
Options, the basics

- Gives the holder the right to something, without the obligation.
Options, the basics

- Gives the holder the right to something, without the obligation.
- European Call Option: The right, but not obligation, to buy a share at a specified price (the strike) and time.
Options, the basics

- Gives the holder the right to something, without the obligation.
- European Call Option: The right, but not obligation, to buy a share at a specified price (the strike) and time.
- Used to manage risk. Used in currencies markets, commodities such as oil, electricity...
Options, the basics

- Gives the holder the right to something, without the obligation.
- European Call Option: The right, but not obligation, to buy a share at a specified price (the strike) and time.
- Used to manage risk. Used in currencies markets, commodities such as oil, electricity...
- Managed funds/superannuation funds use puts to protect against stock declines (I hope!).
Options, the basics

- Gives the holder the right to something, without the obligation.
- European Call Option: The right, but not obligation, to buy a share at a specified price (the strike) and time.
- Used to manage risk. Used in currencies markets, commodities such as oil, electricity...
- Managed funds/superannuation funds use puts to protect against stock declines (I hope!).
- There are many different types of options, European, American, Asian, Bermudan, Australian, Lookback, Barrier, Spread, Options on Optionsand the list continues to grow all the time as people want new products to manage their risk.
European Call, \(V_T = \max(S_T - K, 0) \)

The strike price, \(K \), is $105
European Call, $V_T = \max(S_T - K, 0)$

The strike price, K, is 105
European Call, \(V_T = \max(S_T - K, 0) \)

The strike price, \(K \), is $105
European Call, \(V_T = \max(S_T - K, 0) \)

The strike price, \(K \), is $105
European Call, \(V_T = \max(S_T - K, 0) \)

The strike price, \(K \), is $105
European Call, \(V_T = \max(S_T - K, 0) \)

The strike price, \(K \), is $105
European Call, $V_T = \max(S_T - K, 0)$

The strike price, K, is 105
European Call, \(V_T = \max(S_T - K, 0) \)

- Closed form solution published by Black and Scholes in 1973

\[
C = S_0 N(d_1) - Ke^{-rT} N(d_2)
\]

with

\[
d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma \sqrt{T}}, \quad d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma \sqrt{T}}
\]

where \(K \) is the strike price, \(S_0 \) is the price of the share at time 0, \(\sigma \) is the share’s volatility, \(T \) the time to expiry and \(N(\cdot) \) is the cumulative probability function.
European Call,
\[V_T = \max(S_T - K, 0) \]

- Closed form solution published by Black and Scholes in 1973

\[C = S_0 N(d_1) - Ke^{-rT} N(d_2) \]

with

\[d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma \sqrt{T}}, \quad d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma \sqrt{T}} \]

where \(K \) is the strike price, \(S_0 \) is the price of the share at time 0, \(\sigma \) is the share’s volatility, \(T \) the time to expiry and \(N(\cdot) \) is the cumulative probability function.

- Assumes stock evolves as Geometric Brownian motion,
 \[dS = \mu Sdt + \sigma SdW \] (Log normal)
European Call, \(V_T = \max(S_T - K, 0) \)

- Closed form solution published by Black and Scholes in 1973

\[
C = S_0 N(d_1) - Ke^{-rT} N(d_2)
\]

with

\[
d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma \sqrt{T}}, \quad d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma \sqrt{T}}
\]

where \(K \) is the strike price, \(S_0 \) is the price of the share at time 0, \(\sigma \) is the share’s volatility, \(T \) the time to expiry and \(N(\cdot) \) is the cumulative probability function.

- Assumes stock evolves as Geometric Brownian motion,

\[
dS = \mu Sdt + \sigma SdW \quad \text{(Log normal)}
\]

- The solution, remarkably, does not contain drift of the stock
Running Average - $\frac{1}{t} \int_{0}^{t} S_{\nu} d\nu$
Running Average - $\frac{1}{t} \int_0^t S_\nu d\nu$
Running Average - \(\frac{1}{t} \int_0^t S_\nu d\nu \)
Asian Option, \(V_T = \left(\frac{1}{T} \int_0^T S_v dv - k \right)^+ \)

- Similar to my option is most like this one
- Cheaper than vanilla call or put.
- At the money it is about half the cost of a European. In fact volatility is about \(\frac{\sigma}{\sqrt{3}} \). Price is simply
 \(r^* = r - \frac{1}{2} \left(r - \frac{\sigma^2}{6} \right) \) and \(\sigma^* = \frac{\sigma}{\sqrt{3}} \) into the BS for the price of a Geometric Asian Option
- Very popular in currency and commodity markets
A Volume Weighted Average Price

- Assigns more weight to periods of heavy trading, than light trading

\[
\text{VWAP} (T) = \frac{\int_0^T S_u U_v du}{\int_0^T U_v du}
\]

Where \(S_t \) is the price of the stock at time \(t \) and \(U_t \) is the rate of trades of the stock at time \(t \).
A Volume Weighted Average Price

- Assigns more weight to periods of heavy trading, than light trading
- Example: Suppose a stock trades at $10 today and there are 100 trades, tomorrow it trades at $100 and there is 1 trade.
 The *volume weighted average price* is \[
 \frac{10 \times 100 + 100 \times 1}{100 + 1} = \$10.89
 \]
 while a *arithmetic weighted average price* is \[
 \frac{10 + 100}{2} = \$55.00.
 \]
A Volume Weighted Average Price

- Assigns more weight to periods of heavy trading, than light trading

- Example: Suppose a stock trades at $10 today and there are 100 trades, tomorrow it trades at $100 and there is 1 trade.

 The volume weighted average price is
 \[
 \frac{10 \times 100 + 100 \times 1}{100 + 1} = 10.89
 \]
 while a arithmetic weighted average price is
 \[
 \frac{10 + 100}{2} = 55.00.
 \]

- We can write the VWAP at time T as
 \[
 VWAP(T) = \frac{\int_0^T S_u U_v dv}{\int_0^T U_v dv}
 \]
 Where \(S_t \) is the price of the stock at time \(t \) and \(U_t \) is the rate of trades of the stock at time \(t \).
Example Of Real Stocks

![Graph showing stock price, arithmetic average, and VWAP for DELL over time.](image-url)
Example Of Real Stocks
Example Of Real Stocks

![Graph of stock price, arithmetic average, and VWAP for NAB stock over 250 days. The graph shows fluctuations in the stock price with smoother lines representing the arithmetic average and VWAP.](image-url)
Example Of Real Stocks

![Graph showing TELSTRA stock price, arithmetic average, and VWAP over time.](Image)
My Problem

To price and hedge

- \(V_T = \max \left(\frac{\int_0^T S_u U_v dv}{\int_0^T U_v dv} - K, 0 \right) \) (fixed strike) and
My Problem

To price and hedge

- \(V_T = \max \left(\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv} - K, 0 \right) \) (fixed strike) and
- \(V_T = \max \left(\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv} - S_T, 0 \right) \) (floating strike)
My Problem

To price and hedge

- \(V_T = \max \left(\frac{\int_0^T S \nu \, dv}{\int_0^T \nu \, dv} - K, 0 \right) \) (fixed strike) and
- \(V_T = \max \left(\frac{\int_0^T S \nu \, dv}{\int_0^T \nu \, dv} - S_T, 0 \right) \) (floating strike)

with \(S \) and \(U \) being defined by the stochastic differential equations

- \(dS = rS \, dt + \sigma S \, dW_1 \) (stock)
- \(dU = \alpha(\mu - U) \, dt + \beta U \, dW_2 \) (trades per unit time), (Use several mean reverting models, add jumps later)

For the moment assume correlation between \(W_1 \) and \(W_2 \) is zero, relax this assumption later once we know the problem better.
To price and hedge

- PDE method has 4 state variables, not realistic to solve
To price and hedge

- PDE method has 4 state variables, not realistic to solve
- Probabilistic approach requires us to evaluate an expectation for which we do not know the PDF
My Problem

To price and hedge

- PDE method has 4 state variables, not realistic to solve
- Probabilistic approach requires us to evaluate an expectation for which we do not know the PDF
- Can solve by Monte Carlo, but slow.
An approximation

- Inspired by early work, on Asian options, assume that the volume weighted average price

\[
\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv}
\]

has a log normal distribution at the final time.
An approximation

- Inspired by early work, on Asian options, assume that the volume weighted average price

\[
\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv}
\]

has a log normal distribution at the final time.

- We know

\[
d\tilde{S} = \tilde{\mu}\tilde{S}dt + \tilde{\sigma}\tilde{S}dW
\]

has a log normal distribution,
An approximation

• Inspired by early work, on Asian options, assume that the volume weighted average price

\[
\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv}
\]

has a log normal distribution at the final time.

• We know

\[
d\tilde{S} = \tilde{\mu}\tilde{S}dt + \tilde{\sigma}\tilde{S}dW
\]

has a log normal distribution,

• So all we need to do is find \(\tilde{\mu} \) and \(\tilde{\sigma} \) which will match the expectation and variance of (1) and then we will have a pretty standard equation to solve.
An approximation

- Inspired by early work, on Asian options, assume that the volume weighted average price

\[
\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv}
\]

(1)

has a log normal distribution at the final time.

- We know

\[
d\tilde{S} = \tilde{\mu}\tilde{S}dt + \tilde{\sigma}\tilde{S}dW
\]

has a log normal distribution,

- So all we need to do is find \(\tilde{\mu}\) and \(\tilde{\sigma}\) which will match the expectation and variance of (1) and then we will have a pretty standard equation to solve.

- But how do we get these???
Approximations

- We write the VWAP as \[\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv} = \frac{Y}{Z} \]
Approximations

- We write the VWAP as \[\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv} = \frac{Y}{Z} \]

- Simple approximations to the expectation and variance of \(\frac{Y}{Z} \) where \(Y \) and \(Z \) are random variables.
Approximations

- We write the VWAP as \(\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv} = \frac{Y}{Z} \)

- Simple approximations to the expectation and variance of \(\frac{Y}{Z} \) where \(Y \) and \(Z \) are random variables.

\[
E \left(\frac{Y}{Z} \right) \approx \frac{E(Y)}{E(Z)} - \frac{Cov(Y, Z)}{(E(Z))^2} + \frac{E(Y)}{(E(Z))^3} Var(Z)
\]
Approximations

- We write the VWAP as
 \[
 \frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv} = \frac{Y}{Z}
 \]

- Simple approximations to the expectation and variance of \(\frac{Y}{Z} \) where \(Y \) and \(Z \) are random variables.

\[
E \left(\frac{Y}{Z} \right) \approx \frac{E(Y)}{E(Z)} - \frac{Cov(Y, Z)}{(E(Z))^2} + \frac{E(Y)}{(E(Z))^3} Var(Z)
\]

\[
Var \left(\frac{Y}{Z} \right) \approx \left(\frac{E(Y)}{E(Z)} \right)^2 \left(\frac{Var(Y)}{(E(Y))^2} + \frac{Var(Z)}{(E(Z))^2} - 2 \frac{Cov(Y, Z)}{E(Y)E(Z)} \right)
\]

, Mood et al. (1974).
Approximations

- We write the VWAP as \(\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv} = \frac{Y}{Z} \)

- Simple approximations to the expectation and variance of \(\frac{Y}{Z} \) where \(Y \) and \(Z \) are random variables.

\[
E\left(\frac{Y}{Z} \right) \approx \frac{E(Y)}{E(Z)} - \frac{Cov(Y, Z)}{(E(Z))^2} + \frac{E(Y)}{(E(Z))^3} Var(Z)
\]

\[
Var\left(\frac{Y}{Z} \right) \approx \left(\frac{E(Y)}{E(Z)} \right)^2 \left(\frac{Var(Y)}{(E(Y))^2} + \frac{Var(Z)}{(E(Z))^2} - 2 \frac{Cov(Y, Z)}{E(Y)E(Z)} \right)
\]

, Mood et al. (1974).

- Thats all great, but how do we get all these expectations?
Approximations

- We write the VWAP as \(\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv} = \frac{Y}{Z} \)

- Simple approximations to the expectation and variance of \(\frac{Y}{Z} \) where \(Y \) and \(Z \) are random variables.

\[
E \left(\frac{Y}{Z} \right) \approx \frac{E(Y)}{E(Z)} - \frac{Cov(Y, Z)}{(E(Z))^2} + \frac{E(Y)}{(E(Z))^3} Var(Z)
\]

\[
Var \left(\frac{Y}{Z} \right) \approx \left(\frac{E(Y)}{E(Z)} \right)^2 \left(\frac{Var(Y)}{(E(Y))^2} + \frac{Var(Z)}{(E(Z))^2} - 2 \frac{Cov(Y, Z)}{E(Y)E(Z)} \right)
\]

, Mood et al. (1974).

- That’s all great, but how do we get all these expectations?
- From the Ito-Doeblin formula, and lots of patience
The Doeblin in the Ito-Doeblin formula
The modern theory of stochastic calculus developed from the work of Itô [92]. Not only did Itô define the integral with respect to Brownian motion, but he also developed the change-of-variable formula commonly called Itô’s rule or Itô’s formula. As demonstrated in this chapter, this formula is at the heart of a wide range of useful calculations. An amazing twist to the story of stochastic calculus has recently emerged. In February 1940, the French National Academy of Sciences received a document from W. Doeblin, a French soldier on the German front.
The modern theory of stochastic calculus developed from the work of Itô [92]. Not only did Itô define the integral with respect to Brownian motion, but he also developed the change-of-variable formula commonly called Itô’s rule or Itô’s formula. As demonstrated in this chapter, this formula is at the heart of a wide range of useful calculations. An amazing twist to the story of stochastic calculus has recently emerged. In February 1940, the French National Academy of Sciences received a document from W. Doeblin, a French soldier on the German front. Doeblin died shortly thereafter, and the document remained sealed until
The modern theory of stochastic calculus developed from the work of Itô [92]. Not only did Itô define the integral with respect to Brownian motion, but he also developed the change-of-variable formula commonly called Itô's rule or Itô's formula. As demonstrated in this chapter, this formula is at the heart of a wide range of useful calculations. An amazing twist to the story of stochastic calculus has recently emerged. In February 1940, the French National Academy of Sciences received a document from W. Doeblin, a French soldier on the German front. Doeblin died shortly thereafter, and the document remained sealed until May
The modern theory of stochastic calculus developed from the work of Itô [92]. Not only did Itô define the integral with respect to Brownian motion, but he also developed the change-of-variable formula commonly called Itô’s rule or Itô’s formula. As demonstrated in this chapter, this formula is at the heart of a wide range of useful calculations. An amazing twist to the story of stochastic calculus has recently emerged. In February 1940, the French National Academy of Sciences received a document from W. Doeblin, a French soldier on the German front. Doeblin died shortly thereafter, and the document remained sealed until May 2000.
The modern theory of stochastic calculus developed from the work of Itô [92]. Not only did Itô define the integral with respect to Brownian motion, but he also developed the change-of-variable formula commonly called Itô’s rule or Itô’s formula. As demonstrated in this chapter, this formula is at the heart of a wide range of useful calculations. An amazing twist to the story of stochastic calculus has recently emerged. In February 1940, the French National Academy of Sciences received a document from W. Doeblin, a French soldier on the German front. Doeblin died shortly thereafter, and the document remained sealed until May 2000. When it was opened, the document was found to contain a construction of the stochastic integral slightly different from Itô’s and a clear statement of the change-of-variable formula.
The modern theory of stochastic calculus developed from the work of Itô [92]. Not only did Itô define the integral with respect to Brownian motion, but he also developed the change-of-variable formula commonly called Itô’s rule or Itô’s formula. As demonstrated in this chapter, this formula is at the heart of a wide range of useful calculations. An amazing twist to the story of stochastic calculus has recently emerged. In February 1940, the French National Academy of Sciences received a document from W. Doeblin, a French soldier on the German front. Doeblin died shortly thereafter, and the document remained sealed until May 2000. When it was opened, the document was found to contain a construction of the stochastic integral slightly different from Itô’s and a clear statement of the change-of-variable formula. Doeblin’s work [52], Yor’s [166] analysis of the work, and a detailed history by Bru [24] of the context of the work appeared in the December 2000 issue of Comptes Rendus de L’Académie des Sciences. An English translation of this material is [25].

Shreve (2004)
Now back to the problem

- We need many expectations.
Now back to the problem

- We need many expectations.
- We can find all these expectations from properties of the Itô integral.
Demonstrate the method on $\mathbb{E}(S_t)$

We have $dS = \mu S dt + \sigma S dW$
Demonstrate the method on $\mathbb{E}(S_t)$

We have $dS = \mu S dt + \sigma S dW$

This is really shorthand for

$$S_t - S_0 = \int_0^t \mu S \nu d\nu + \int_0^t \sigma S \nu dW \nu$$
Demonstrate the method on $\mathbb{E}(S_t)$

We have $dS = \mu S dt + \sigma S dW$

This is really shorthand for

$$S_t - S_0 = \int_0^t \mu S \nu d\nu + \int_0^t \sigma S \nu dW_\nu$$

Taking the expectation of this we have

$$\mathbb{E}(S_t - S_0) = \mathbb{E}(\int_0^t \mu S \nu d\nu + \int_0^t \sigma S \nu dW_\nu)$$
Demonstrate the method on $\mathbb{E}(S_t)$

We have $dS = \mu S dt + \sigma S dW$

This is really shorthand for

$$S_t - S_0 = \int_0^t \mu S \nu d\nu + \int_0^t \sigma S \nu dW \nu$$

Taking the expectation of this we have

$$\mathbb{E}(S_t - S_0) = \mathbb{E}(\int_0^t \mu S \nu d\nu + \int_0^t \sigma S \nu dW \nu)$$

Now the expectation of an Ito integral is 0, so we have

$$\mathbb{E}(S_t - S_0) = \mathbb{E}(\int_0^t \mu S \nu d\nu)$$
Demonstrate the method on $\mathbb{E}(S_t)$

Then moving the expectation inside the integral

$$\mathbb{E}(S_t - S_0) = \int_0^t \mu \mathbb{E}(S_\nu) d\nu$$
Demonstrate the method on $\mathbb{E}(S_t)$

Then moving the expectation inside the integral

$$\mathbb{E}(S_t - S_0) = \int_0^t \mu \mathbb{E}(S_\nu) d\nu$$

finally differentiating we have

$$\frac{d\mathbb{E}(S_t)}{dt} = \mu \mathbb{E}(S_t)$$
Demonstrate the method on $\mathbb{E}(S_t)$

Then moving the expectation inside the integral

$$\mathbb{E}(S_t - S_0) = \int_0^t \mu \mathbb{E}(S_\nu) d\nu$$

finally differentiating we have

$$\frac{d\mathbb{E}(S_t)}{dt} = \mu \mathbb{E}(S_t)$$

which is simple to solve given the initial condition.
Obtaining the expectations

- We can do this for all the expectations which we require, it is long and tedious, but doable.
Obtaining the expectations

- We can do this for all the expectations which we require, it is long and tedious, but doable.
- Final system has 19 equations which are easy to solve in Matlab or Maple
Obtaining the expectations

- We can do this for all the expectations which we require, it is long and tedious, but doable.
- Final system has 19 equations which are easy to solve in Matlab or Maple
- Can now use the approximations

\[
E \left(\frac{Y}{Z} \right) \approx \frac{E(Y)}{E(Z)} - \frac{Cov(Y, Z)}{(E(Z))^2} + \frac{E(Y)}{(E(Z))^3} \cdot Var(Z)
\]

\[
Var \left(\frac{Y}{Z} \right) \approx \left(\frac{E(Y)}{E(Z)} \right)^2 \left(\frac{Var(Y)}{(E(Y))^2} + \frac{Var(Z)}{(E(Z))^2} - 2 \frac{Cov(Y, Z)}{E(Y)E(Z)} \right)
\]

to find the expectation and variance at any time \(T \) for

\[
\frac{\int_0^T S_v U_v dv}{\int_0^T U_v dv}
\]
Lots of +ve eigenvalues, but the one to look out for is the combination of $\beta^2 - 2\alpha$ which appears in many places.
Now use the log normal approximation

Now we know that the expectation and variance of our underlying $d\tilde{S} = \tilde{\mu}Sdt + \tilde{\sigma}SdW$ are

- $\mathbb{E}(\tilde{S}(t)) = S_0e^{\tilde{\mu}t}$
- $\text{Var}(\tilde{S}(t)) = S_0^2e^{2\tilde{\mu}t}(e^{\tilde{\sigma}^2t} - 1)$
Now use the log normal approximation

Now we know that the expectation and variance of our underlying \(d\tilde{S} = \tilde{\mu}Sdt + \tilde{\sigma}SdW \) are

- \[
E(\tilde{S}(t)) = S_0e^{\tilde{\mu}t}
\]
- \[
Var(\tilde{S}(t)) = S_0^2e^{2\tilde{\mu}t}(e^{\tilde{\sigma}^2t} - 1)
\]

- We can rewrite these as

\[
\tilde{\mu} = \frac{1}{t} \log \frac{E(\tilde{S}(t))}{S_0}
\]
\[
\tilde{\sigma} = \sqrt{\frac{1}{t} \log \frac{Var(\tilde{S}(t)) + (E(\tilde{S}(t)))^2}{(E(\tilde{S}(t)))^2}}
\]
How well does it work?

From Simulation and ODEs, $dS=0.2S\,dt+0.5S\,dW$

1, $dU=100(100−U)\,dt+2U\,dW$

$s_0=110$, $u_0=10$, time of VWAP is from 0 to 0.5, $1e7$ Simulations, Time split up into $1e3$ intervals

Solid - results from simulations, Dashed - results from ODEs
How well does it work?

From Simulation and ODEs, \(dS = 0.2S dt + 0.5S dW_1 \), \(dU = 110(100 - U) dt + 2U dW_2 \)

\(s_0 = 110, u_0 = 10, \) time of VWAP is from 0 to 0.5, 1e7 Simulations, Time split up into 1e3 intervals

Solid - results from simulations, Dashed - results from ODEs
PDF at final time for different σs

$\sigma = 0.05$

PDF for the VWAP, $dS = 0.15Sdt + 0.05SdW_1$, $dU = 100(110-U)dt + 2UdW_2$

$s_0 = 110$, $u_0 = 200$, time of VWAP is from 0 to 0.5, 2e7 Simulations, Time split up into 1e3 intervals

- Log Normal Fit From Empirical
- Log Normal Fit From ODE
- Empirical
PDF at final time for different σ s

$\sigma = 0.1$

PDF for the VWAP, $dS=0.15Sdt+0.1SdW_t$, $dU=100(110-U)dt+2UdW_t$
$s_0=110$, $u_0=200$, time of VWAP is from 0 to 0.5, $2e7$ Simulations, Time split up into $1e3$ intervals
PDF at final time for different σs

$\sigma = 0.15$

PDF for the VWAP, $dS=0.15Sdt+0.15SdW_1$, $dU=100(110-U)dt+2 UdW_2$

$s_0=110$, $u_0=200$, time of VWAP is from 0 to 0.5, 2e7 Simulations, Time split up into 1e3 intervals
PDF at final time for different σs

$\sigma = 0.2$

PDF for the VWAP, $dS = 0.15Sdt + 0.2SdW_1$, $dU = 100(110-U)dt + 2UdW_2$

$s_0 = 110$, $u_0 = 200$, time of VWAP is from 0 to 0.5, $2e7$ Simulations, Time split up into $1e3$ intervals

Log Normal Fit From Empirical
- Log Normal Fit From ODE
- Empirical
PDF at final time for different σs

$\sigma = 0.25$

PDF for the VWAP, $dS=0.15Sdt+0.25SdW_1$, $dU=100(110-U)dt+2UdW_2$

$s_0=110$, $u_0=200$, time of VWAP is from 0 to 0.5, 2e7 Simulations, Time split up into 1e3 intervals

Log Normal Fit From Empirical
Log Normal Fit From ODE
Empirical
PDF at final time for different σs

$\sigma = 0.3$

PDF for the VWAP, $dS=0.15Sdt+0.3SdW$, $dU=100(110-U)dt+2UdW$

$s_0=110$, $u_0=200$, time of VWAP is from 0 to 0.5, 2e7 Simulations, Time split up into 1e3 intervals
PDF at final time for different σs

$\sigma = 0.35$

PDF for the VWAP, $dS=0.15Sdt+0.35SdW$, $dU=100(110−U)dt+2UdW$

$s_0=110$, $u_0=200$, time of VWAP is from 0 to 0.5, 2e7 Simulations, Time split up into 1e3 intervals
PDF at final time for different σs

$\sigma = 0.4$

PDF for the VWAP, $dS = 0.15Sdt + 0.4SdW$, $dU = 100(110 - U)dt + 2UdW$

$s_0 = 110$, $u_0 = 200$, time of VWAP is from 0 to 0.5, 2e7 Simulations, Time split up into 1e3 intervals
Comments on Result

- Approximation is better for lower σ, which is not unexpected - this method when applied to the normal Asian option which makes an approximation to $\int_0^t S_\nu d\nu$ is only good for small σ.
Comments on Result

• Approximation is better for lower σ, which is not unexpected - this method when applied to the normal Asian option which makes an approximation to $\int_0^t S_\nu d\nu$ is only good for small σ.

• Approximation is bad for small times.
Pricing the options

This is the easy part. We can easily obtain PDEs which describe the option price from standard techniques

- Fixed strike (BC $\max(\tilde{S}_T - K, 0)$)

\[
\frac{\partial V}{\partial t} + \frac{1}{2} (\tilde{\sigma} \tilde{S})^2 \frac{\partial^2 V}{\partial \tilde{S}^2} + (\tilde{\mu} - \lambda(t, \tilde{S})\tilde{\sigma} \tilde{S}) \frac{\partial V}{\partial \tilde{S}} - r\tilde{V} = 0
\]

We could also price American options as well as exotic products such as Barrier, Lookback....
Pricing the options

This is the easy part. We can easily obtain PDEs which describe the option price from standard techniques

- Fixed strike (BC $\max(\tilde{S}_T - K, 0)$)

$$\frac{\partial V}{\partial t} + \frac{1}{2}(\sigma \tilde{S})^2 \frac{\partial^2 V}{\partial \tilde{S}^2} + (\bar{\mu} - \lambda(t, \tilde{S})\sigma \tilde{S}) \frac{\partial V}{\partial \tilde{S}} - r\tilde{V} = 0$$

- Floating strike (BC $\max(S_T - \tilde{S}_T, 0)$)

$$\frac{\partial V}{\partial t} + \frac{1}{2}(\sigma S)^2 \frac{\partial^2 V}{\partial S^2} + \rho \sigma S \tilde{S} \frac{\partial^2 V}{\partial S \partial \tilde{S}}$$

$$+ \frac{1}{2}(\bar{\sigma} \tilde{S})^2 \frac{\partial^2 V}{\partial \tilde{S}^2} + r S \frac{\partial V}{\partial S} + (\bar{\mu} - \lambda(t, \tilde{S})\bar{\sigma} \tilde{S}) \frac{\partial V}{\partial \tilde{S}} - rV = 0$$
Pricing the options

This is the easy part. We can easily obtain PDEs which describe the option price from standard techniques

- **Fixed strike (BC \(\max(\tilde{S}_T - K, 0) \))**

\[
\frac{\partial V}{\partial t} + \frac{1}{2} (\tilde{\sigma}\tilde{S})^2 \frac{\partial^2 V}{\partial \tilde{S}^2} + (\tilde{\mu} - \lambda(t, \tilde{S})\tilde{S}) \frac{\partial V}{\partial \tilde{S}} - r\tilde{V} = 0
\]

- **Floating strike (BC \(\max(S_T - \tilde{S}_T, 0) \))**

\[
\frac{\partial V}{\partial t} + \frac{1}{2} (\sigma S)^2 \frac{\partial^2 V}{\partial S^2} + \rho \sigma S \tilde{S} \frac{\partial^2 V}{\partial S \partial \tilde{S}} + \frac{1}{2} (\tilde{\sigma}\tilde{S})^2 \frac{\partial^2 V}{\partial \tilde{S}^2} + r S \frac{\partial V}{\partial S} + (\tilde{\mu} - \lambda(t, \tilde{S})\tilde{S}) \frac{\partial V}{\partial \tilde{S}} - rV = 0
\]

- We could also price American options as well as exotic products without too much more work? I.e Barrier, Lookback.....
In the case that the market price of risk is constant, the
fixed strike has the analytic solution

\[V_{fixed}(0) = e^{(r-\tilde{\mu}+\tilde{\sigma}\lambda)T} S(0) \Phi(d_1) - Ke^{-rT} \Phi(d_2) \]

where

\[
\begin{align*}
 d_1 &= d_2 + \tilde{\sigma} \sqrt{T} \\
 d_2 &= \frac{\log(S(0)/K) + (\tilde{\mu} - \tilde{\sigma}\lambda - \frac{1}{2}\tilde{\sigma}^2)T}{\tilde{\sigma} \sqrt{T}}
\end{align*}
\]

where \(\Phi(\cdot) \) is the cumulative normal distribution function, Benth (2004).
Solutions

- In the case that the market price of risk is constant, the fixed strike has the analytic solution

\[
V_{\text{fixed}}(0) = e^{(r-\tilde{\mu}+\tilde{\sigma}\lambda)T}S(0)\Phi(d_1) - Ke^{-rT}\Phi(d_2)
\]

where

\[
d_1 = d_2 + \tilde{\sigma}\sqrt{T} \quad \text{and} \quad \\
d_2 = \frac{\log(S(0)/K) + (\tilde{\mu} - \tilde{\sigma}\lambda - \frac{1}{2}\tilde{\sigma}^2)T}{\tilde{\sigma}\sqrt{T}}
\]

where \(\Phi(\cdot)\) is the cumulative normal distribution function, Benth (2004).

- Otherwise we must use a numeric technique such as finite differences, Monte Carlo, FFT, etc
An Example

Method demonstrated on the system

\[dS = 0.1S\, dt + 0.5S\, dW_1 \]
\[dU = 100(110 - U)\, dt + 2U\, dW_2 \]

\(U_0 = 200, \, K = 100, \, r = 10\% \) and time from 0 to 0.5
An Example

Fixed Strike VWAP Price, $K=100$, $r=0.1$, $dS=0.15Sdt+0.5SdW_t$, $dU=100(110−U)dt+2UdW_2$

$u_0=200$, time of VWAP is from 0 to 0.5
Share Purchase Plans

\[V_T = \left(S_{T_2} - D \int_{T_0}^{T_1} S_v U_v dv \right)^+, T_1 - T_0 \text{ typically 3-10 days, } T_2 - T_1 \text{ typically 10-30 days, } D \text{ a discount factor usually 70%-90\%} \]

- We can value this using the method just described.
- Raises capital easily, no prospectus
- Aimed at small investors, max $5000
- IAG, Suncorp, AMP
- We can immediately now say how much it is worth to participate in a share purchase plan (Actually what the companies are giving away for free!!)
- I am not suggesting you do this, but since they have given you this payoff.....
Summary

- Have a way to price the option
Summary

- Have a way to price the option
- Can price exotics
Summary

- Have a way to price the option
- Can price exotics
- FAST
Summary

- Have a way to price the option
- Can price exotics
- FAST
- Can use as a control variate in Monte Carlo
Summary

- Have a way to price the option
- Can price exotics
- FAST
- Can use as a control variate in Monte Carlo
- Can tell you how much companies are giving to you when they offer shares at a VWAP to you in a share purchase plan.
Future Work

- Find a region where this approximation is good in some sense.
- Take more moments?
- Find a practical hedge
- More Monte Carlo
Thanks

- MASCOS for financial assistance.
- Dr Chandler for comments and suggestions.
- Thanks for Josh for helping with the tex.
References

