Quasi-Stationary Distributions for Continuous-Time Markov Chains

David Sirl

AUSTRALIAN RESEARCH COUNCIL

Centre of Excellence for Mathematics and Statistics of Complex Systems

Recall . . .

- ▲ time-homogeneous CTMC (X(t), t ≥ 0) taking values in a countable set S (Z⁺) is completely described by its transition function P(t) = (p_{ij}(t), i, j ∈ S, t ≥ 0).
- In practice we usually know only the *transition rates*: $(q_{ij} = p'_{ij}(0^+), i, j \in S)$ is the *q*-matrix.
 - $q_{ij}, i \neq j$, is the transition rate from state *i* to state *j*,
 - $-q_{ii} = q_i = \sum_{j \neq i} q_{ij}$ is the total rate out of state *i*.
- If we know P, we can in principle answer any question about the behaviour of the chain. The challenge is to try and answer these questions in terms of Q.

Recall . . .

A Birth-Death Process is a CTMC with state space $S = \{0, 1, 2, ...\}$ such that if the chain is in state *i*, transitions can only be made to state i - 1 or i + 1.

Its' q-matrix has non-zero entries

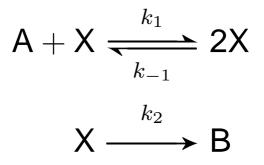
$$q_{i,i+1} = \lambda_i,$$

$$q_{i,i-1} = \mu_i,$$

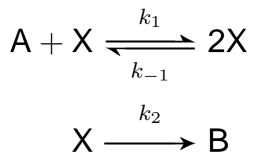
$$q_{ii} = -(\lambda_i + \mu_i),$$

(put $\mu_0 = 0$) where $\lambda_i, \mu_i > 0 \ \forall i \in C$, and $\lambda_0 \ge 0$.

The Chemical Reaction

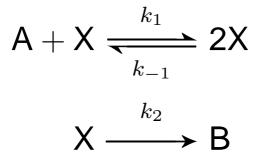


The Chemical Reaction



- Model the number of molecules of X with a CTMC a birth-death process on $S = \{0\} \cup C$, where zero is absorbing and C is an irreducible transient class.
- The system can be either *closed* or *open* with respect to A & B. $C = \{1, 2, ..., N\}$ or $\{1, 2, ...\}$, respectively.

The Chemical Reaction



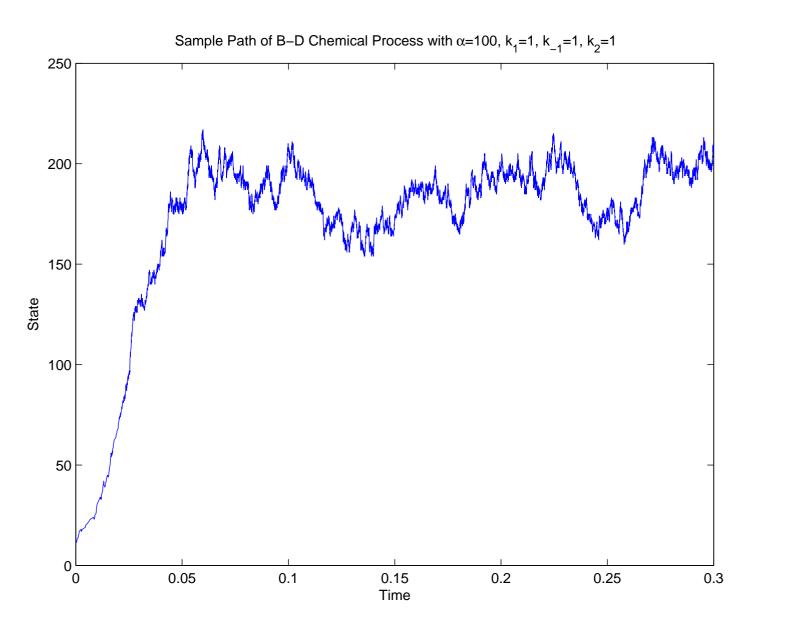
The birth and death rates are, respectively,

$$\lambda_i = \alpha k_1 i,$$

and

$$\mu_i = k_2 i + k_{-1} \frac{i(i-1)}{2}.$$

A Sample Path



A Stationary Distribution?

Q: Is this behaviour limiting?

- The state space is reducible $S = \{0\} \cup C$.
- The class C is transient.
- The limiting distribution is $\pi = (1, 0, 0, ...)$.

A Stationary Distribution?

Q: Is this behaviour limiting?

- The state space is reducible $S = \{0\} \cup C$.
- **•** The class *C* is transient.
- The limiting distribution is $\pi = (1, 0, 0, ...)$.

A: No — looking at the limiting behaviour sees all of the probability going to the absorbing state.

A Stationary Distribution?

Q: Is this behaviour limiting?

- The state space is reducible $S = \{0\} \cup C$.
- **•** The class *C* is transient.
- The limiting distribution is $\pi = (1, 0, 0, ...)$.

A: No — looking at the limiting behaviour sees all of the probability going to the absorbing state.

So how can we explain this behaviour?

Instead

We need to condition on the process having not been absorbed at time t.

Instead

- We need to condition on the process having not been absorbed at time t.
- Rather than the transition probabilities

$$p_{ij}(t) = \mathbb{P}(X(t) = j \mid X(0) = i),$$

we consider the conditional transition probabilities

$$m_{ij}(t) \stackrel{\text{def}}{=} \frac{p_{ij}(t)}{1 - p_{i0}(t)} \\ = \mathbb{P}(X(t) = j \mid X(t) \in C, X(0) = i).$$

Definitions

■ A distribution $a = (a_i, i \in C)$ is a QSD over *C* if when the initial distribution is *a*, the state probabilities $p_{aj}(t) = \sum_{i \in C} a_i p_{ij}(t)$ conditioned on non-absorption are time-invariant (and given by *a*):

$$\frac{p_{aj}(t)}{1 - p_{a0}(t)} = a_j, \quad j \in C.$$

■ A distribution $b = (b_i, i \in C)$ is a *a*-LCD over *C* if when *a* is the initial distribution, b_j gives the limiting probability of the process being in state *j*, conditional on non-absorption:

$$\lim_{t \to \infty} \frac{p_{aj}(t)}{1 - p_{a0}(t)} = b_j, \quad j \in C.$$

Definitions

▲ ν -invariant measure (over *C*) for *P* is a collection of numbers $m = (m_i, i \in C)$ which, for some $\nu > 0$, satisfy

$$\sum_{i \in C} m_i p_{ij}(t) = e^{-\nu t} m_j, \qquad j \in C, \ t \ge 0.$$

Definitions

▲ *ν*-invariant measure (over *C*) for *P* is a collection of numbers $m = (m_i, i \in C)$ which, for some ν > 0, satisfy

$$\sum_{i \in C} m_i p_{ij}(t) = e^{-\nu t} m_j, \qquad j \in C, \ t \ge 0.$$

▲ ν -invariant measure (over *C*) for *Q* is a collection of numbers $m = (m_i, i \in C)$ which, for some $\nu > 0$, satisfy

$$\sum_{i \in C} m_i q_{ij} = -\nu m_j, \qquad j \in C.$$

Finite State Space

- Easy because of spectral decomposition (of P) and Perron-Frobenius theory.
- The δ_i -LCD and unique QSD is given by the probability measure m such that

$$mP_C(t) = e^{-\nu_1 t} m.$$

This is equivalent to

$$mQ_C = -\nu_1 m,$$

where $-\nu_1$ is the eigenvalue with maximal real part (it is real and negative).

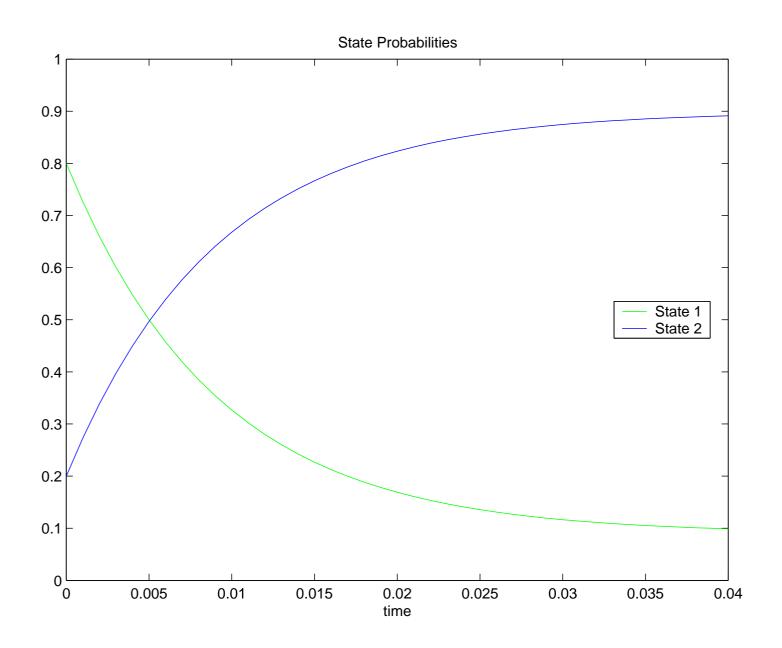
Lets look at the CTMC with the following q-matrix:

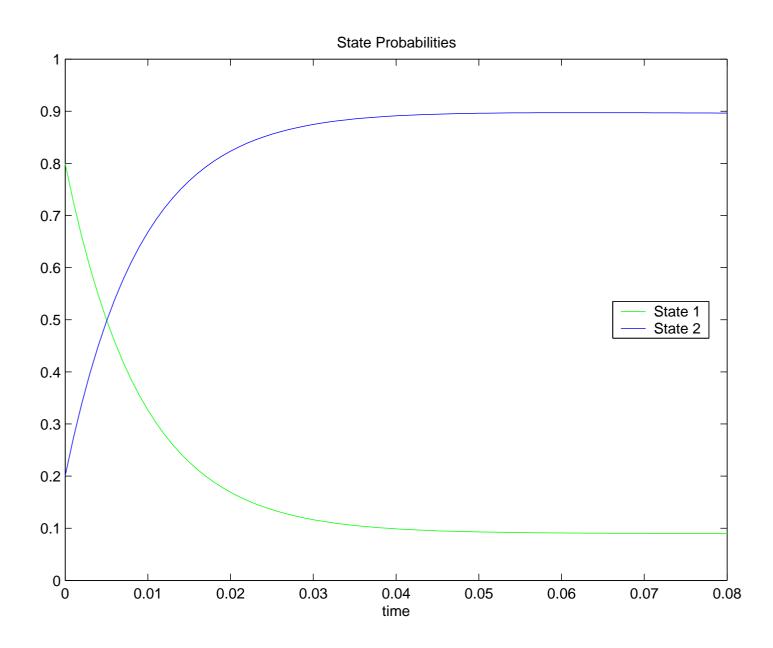
$$Q = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -100 & 99 \\ 0 & 10 & -10 \end{pmatrix}$$

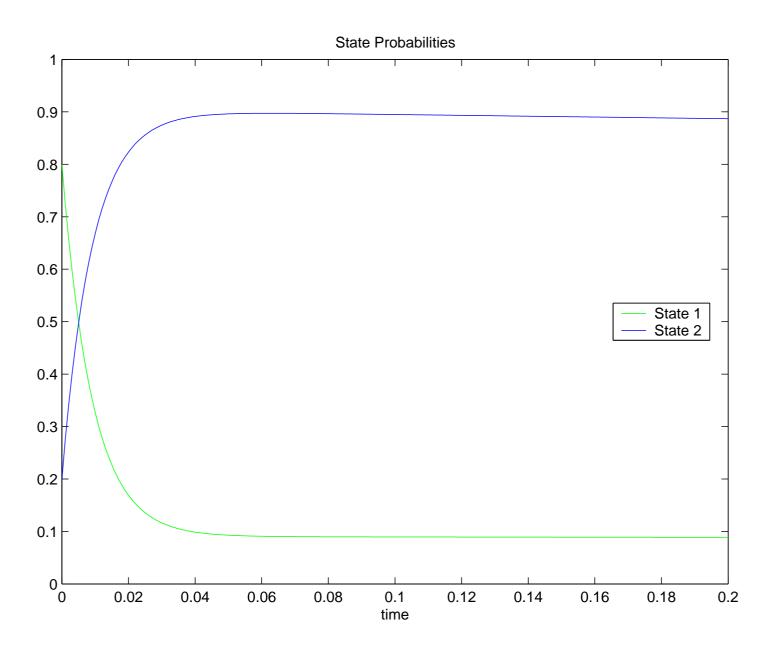
- We know that the transition function is $P(t) = \exp(tQ)$.
- We can get Maple to calculate P(t), and indeed the state probabilities

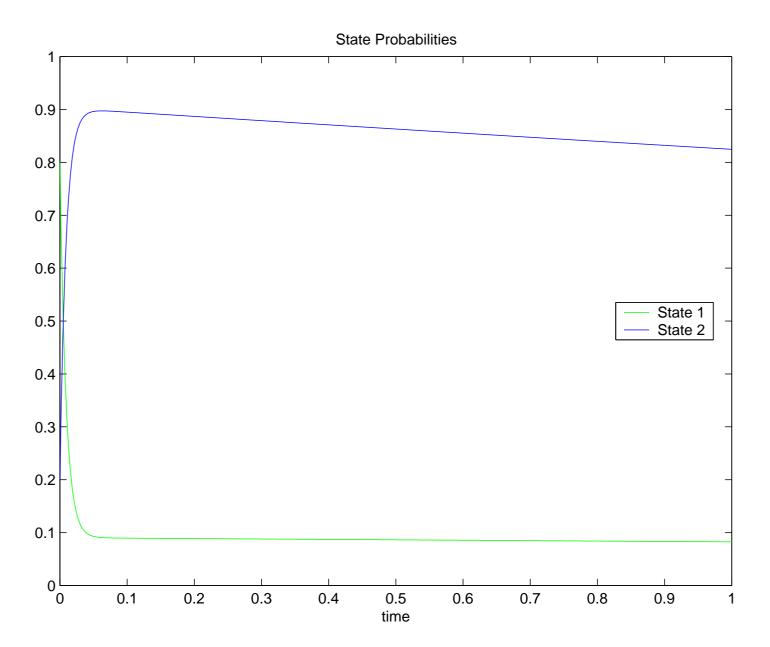
$$p_j(t) = \sum_{i \in S} a_i p_{ij}(t), \quad j \in S,$$

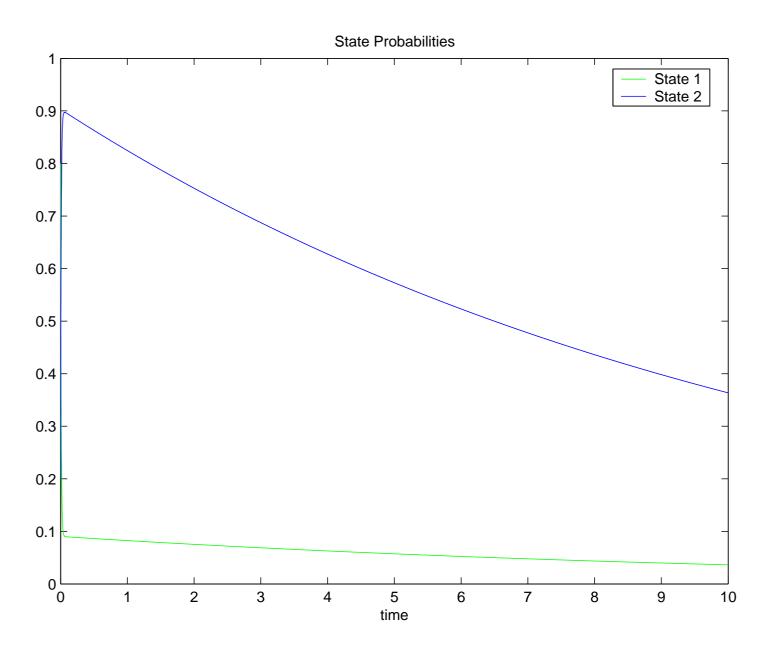
where *a* is an initial distribution, say $\left(0 \frac{4}{5} \frac{1}{5}\right)$.

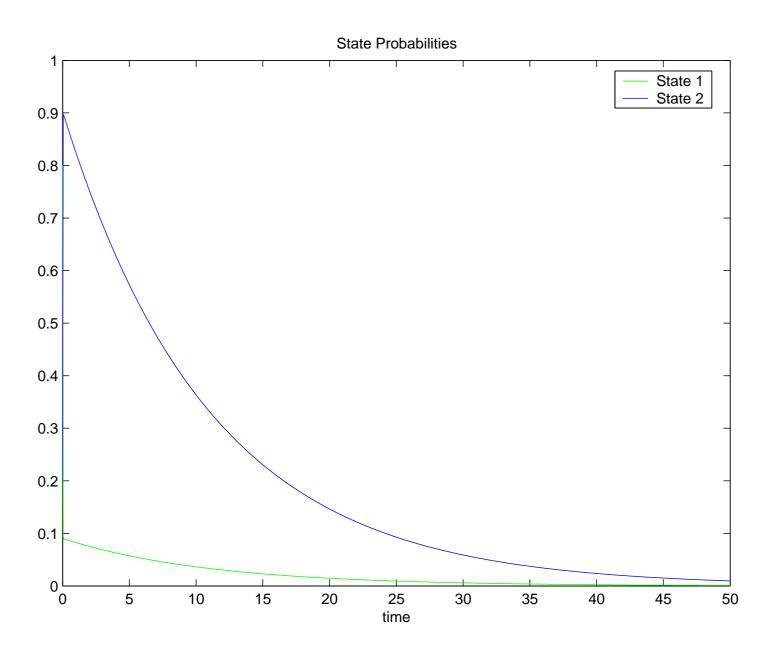


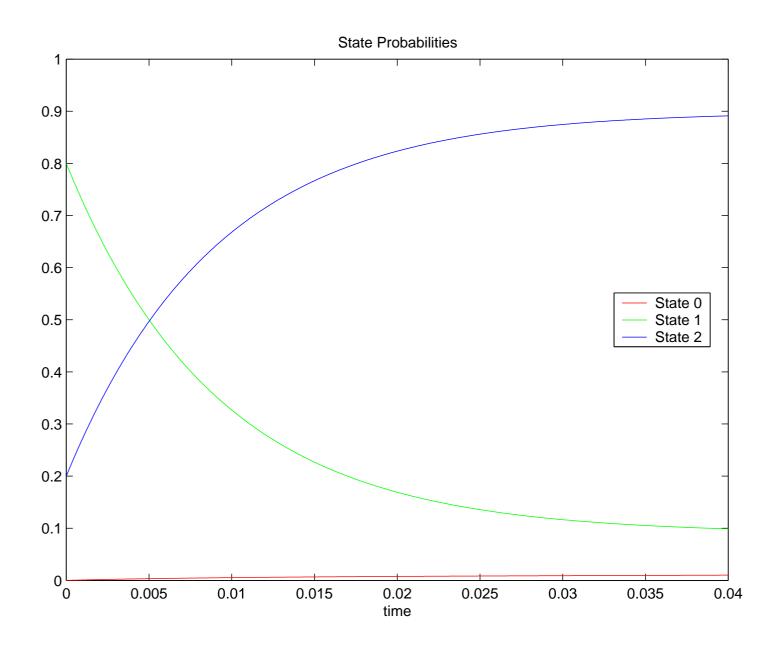


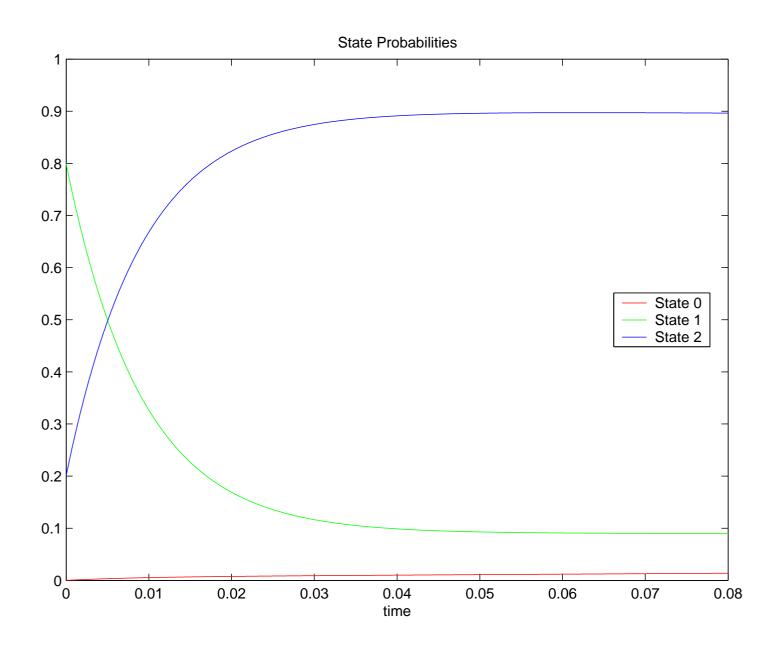


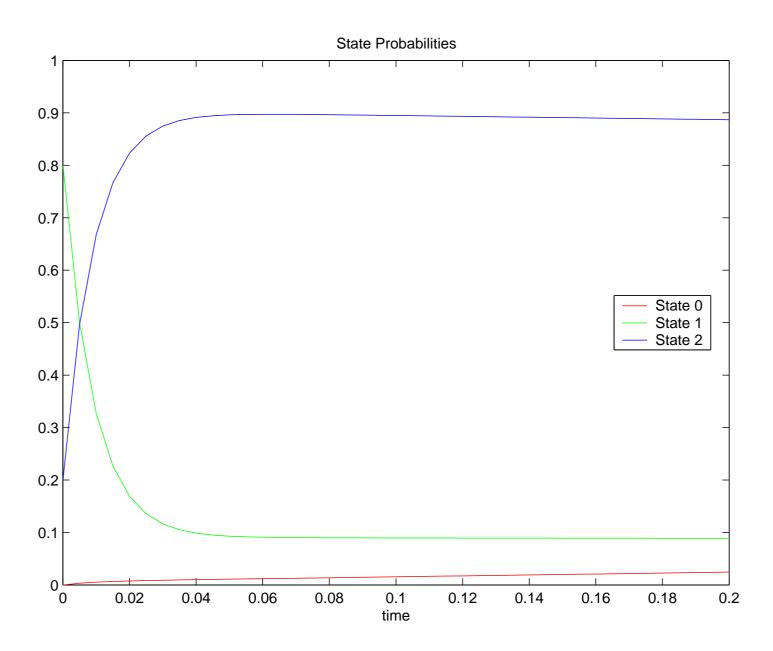


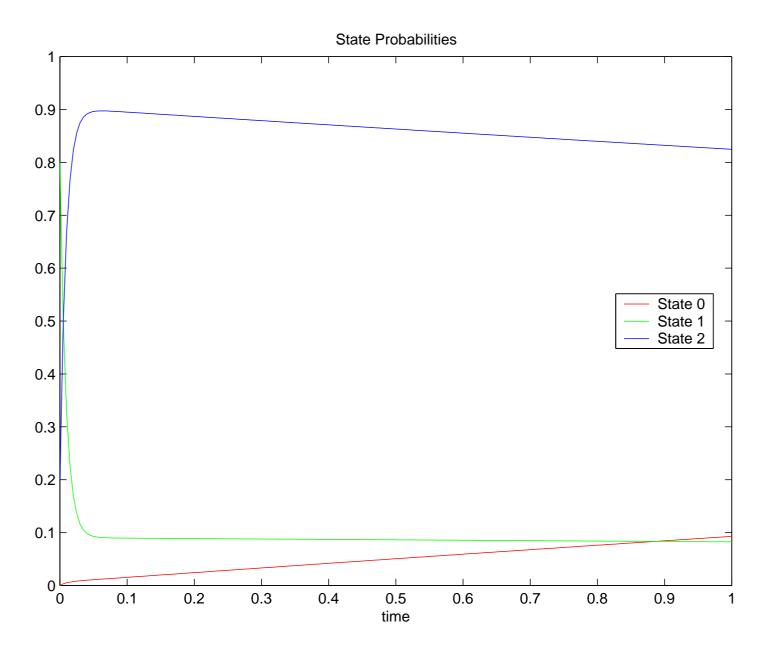


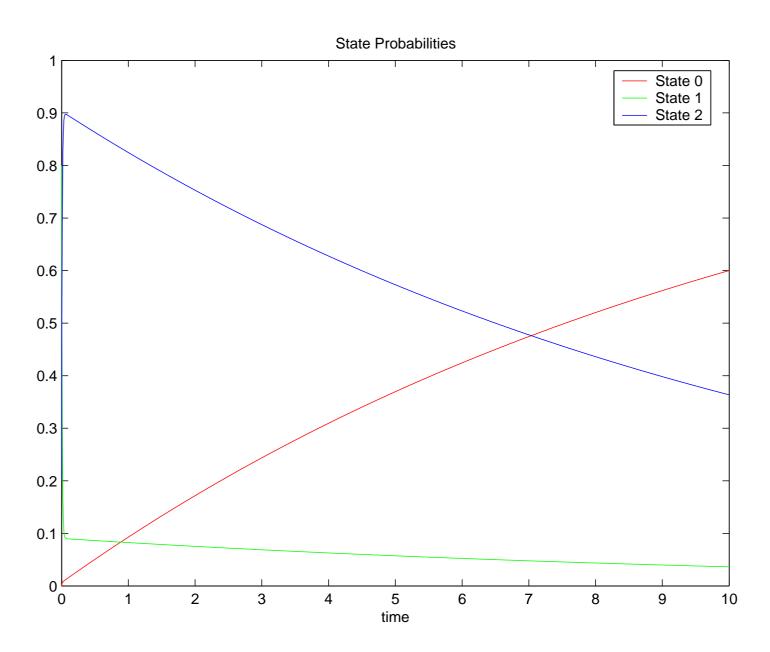


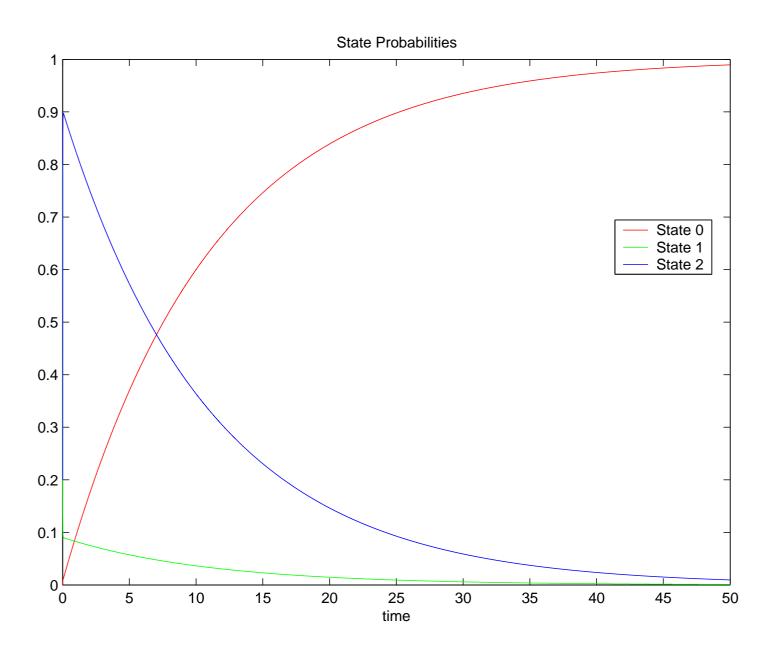


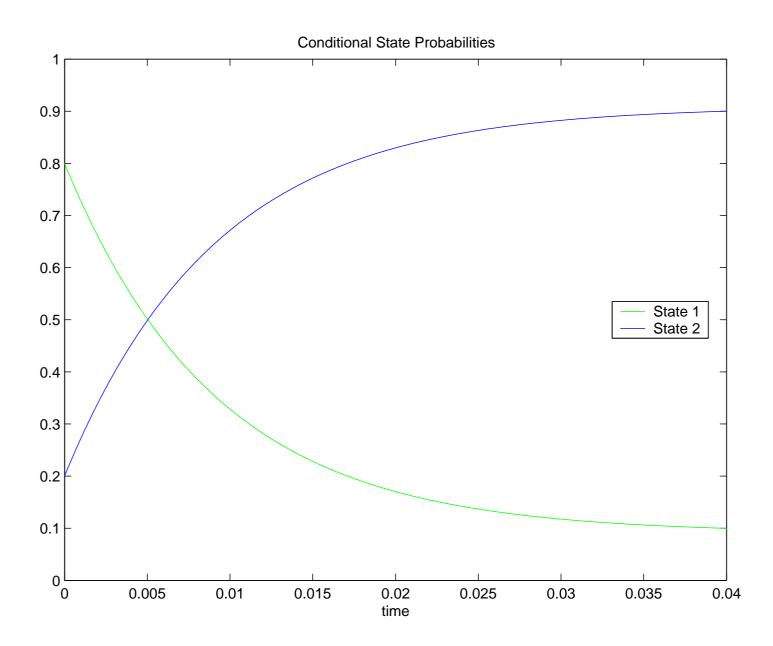


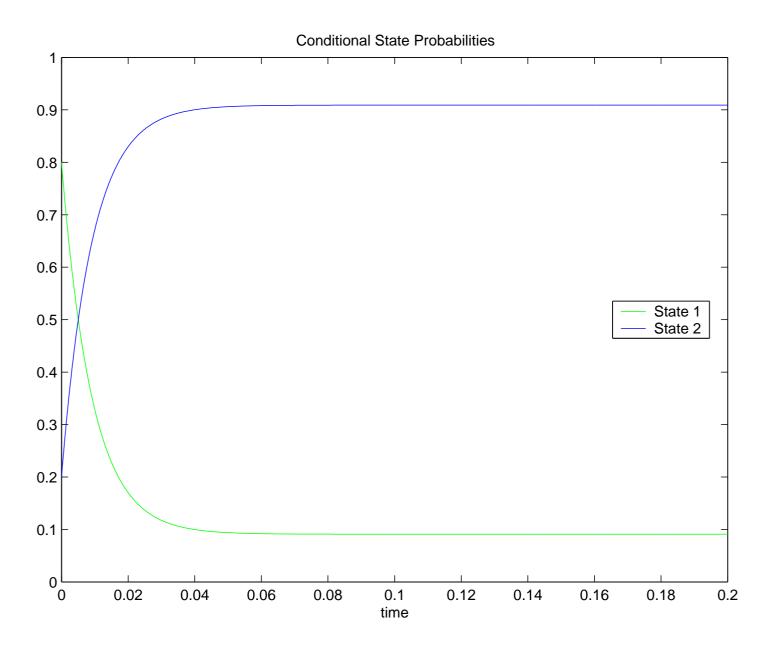


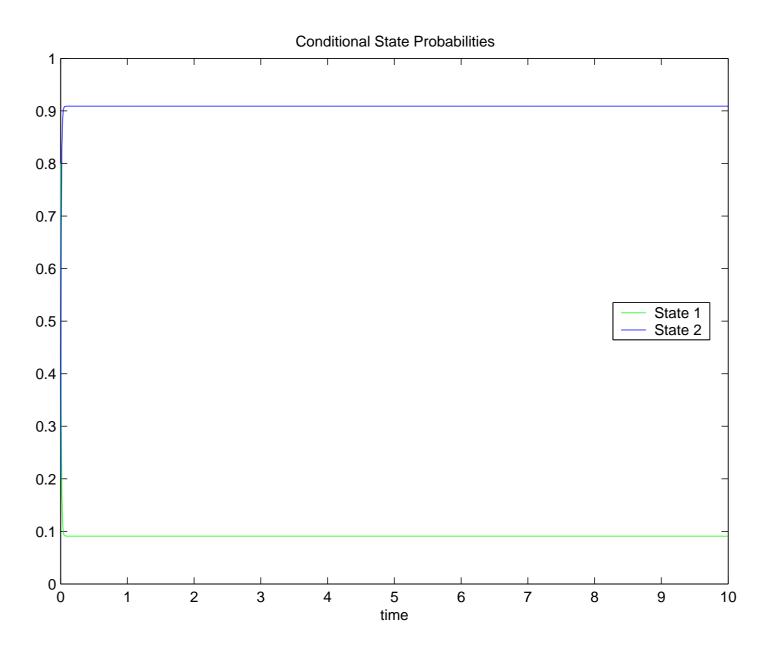


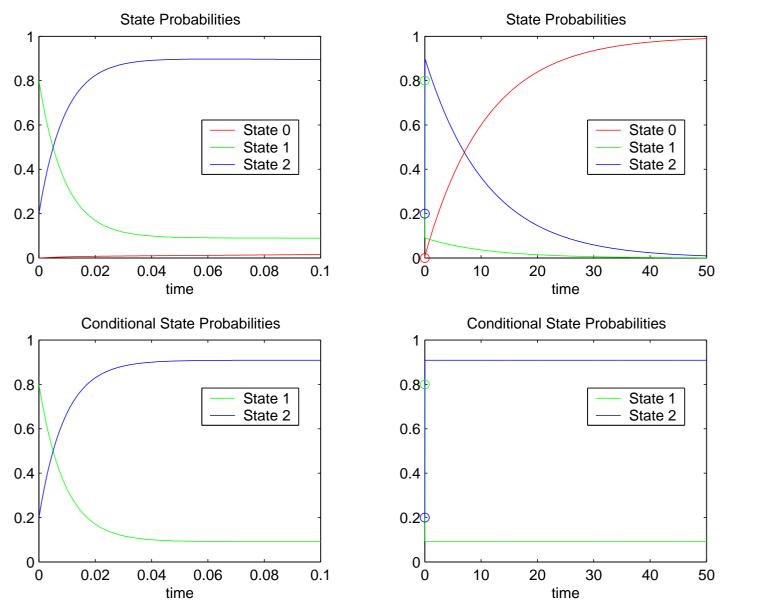








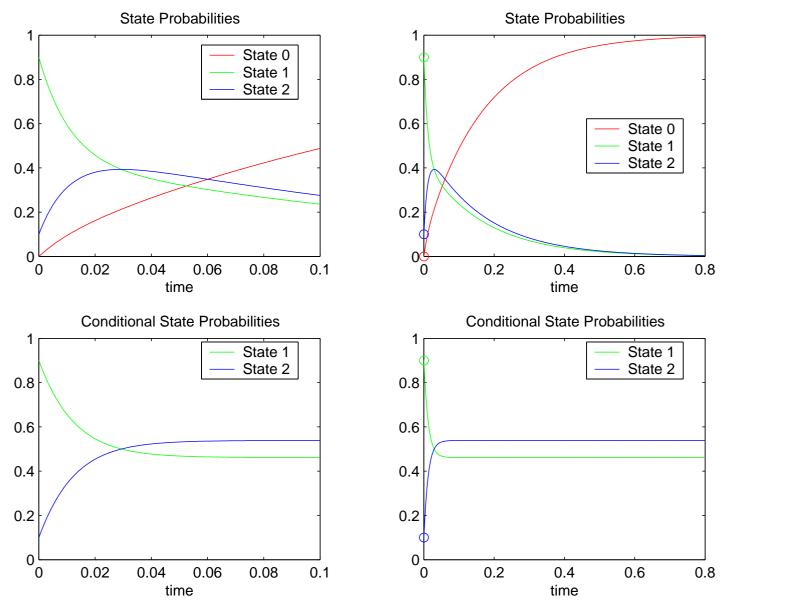




Lets look at the CTMC with the following q-matrix:

$$Q = \begin{pmatrix} 0 & 0 & 0 \\ 13 & -55 & 42 \\ 0 & 42 & -42 \end{pmatrix}$$

Again we can get Maple to evaluate P and p, and then use Matlab to plot them:



$$P(t) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + e^{-6t} \begin{pmatrix} 0 & 0 & 0 \\ \frac{-78}{85} & \frac{36}{85} & \frac{42}{85} \\ \frac{-91}{85} & \frac{42}{85} & \frac{49}{85} \end{pmatrix} + e^{-91t} \begin{pmatrix} 0 & 0 & 0 \\ \frac{-7}{85} & \frac{49}{85} & \frac{-42}{85} \\ \frac{6}{85} & \frac{-42}{85} & \frac{36}{85} \end{pmatrix}$$

A Simple Example II

$$P(t) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + e^{-6t} \begin{pmatrix} 0 & 0 & 0 \\ \frac{-78}{85} & \frac{36}{85} & \frac{42}{85} \\ \frac{-91}{85} & \frac{42}{85} & \frac{49}{85} \end{pmatrix} + e^{-91t} \begin{pmatrix} 0 & 0 & 0 \\ \frac{-7}{85} & \frac{49}{85} & \frac{-42}{85} \\ \frac{6}{85} & \frac{-42}{85} & \frac{36}{85} \end{pmatrix}$$

Now, solving $mQ = -\nu m$ gives

$$\nu_1 = 6, \quad \nu_2 = 91$$

and

$$m_1 = \left(\begin{array}{cc} \frac{6}{13} & \frac{7}{13} \end{array} \right).$$

Definitions

▲ A distribution $a = (a_i, i \in C)$ is a QSD over *C* if when the initial distribution is *a*, the state probabilities $p_{aj}(t) = \sum_{i \in C} a_i p_{ij}(t)$ conditioned on non-absorption are time-invariant (and given by *a*):

$$\frac{p_{aj}(t)}{1 - p_{a0}(t)} = a_j, \quad j \in C.$$

■ A distribution $b = (b_i, i \in C)$ is a *a*-LCD over *C* if when *a* is the initial distribution, b_j gives the limiting probability of the process being in state *j*, conditional on non-absorption:

$$\lim_{t \to \infty} \frac{p_{aj}(t)}{1 - p_{a0}(t)} = b_j, \quad j \in C.$$

Definitions

■ A ν -invariant measure (over *C*) for *P* is a collection of numbers $m = (m_i, i \in C)$ which, for some $\nu > 0$, satisfy

$$\sum_{i \in C} m_i p_{ij}(t) = e^{-\nu t} m_j, \qquad j \in C, \ t \ge 0.$$

■ A ν -invariant measure (over *C*) for *Q* is a collection of numbers $m = (m_i, i \in C)$ which, for some $\nu > 0$, satisfy

$$\sum_{i \in C} m_i q_{ij} = -\nu m_j, \qquad j \in C.$$

The Decay Parameter

The quantity

$$\lambda_C := \lim_{t \to \infty} \frac{-\log(p_{ij}(t))}{t}$$

exists and is independent of $i, j \in C$.

Called the decay parameter because

$$p_{ij}(t) \le M_{ij} e^{-\lambda_C t}, \qquad 0 < M_{ij} < \infty.$$

• Can show that for a ν -invariant measure for P over C to exist, it is necessary that $(0 <)\nu \leq \lambda_C$.

P is now an infinite matrix, so Perron-Frobenius theory no longer applies.

- P is now an infinite matrix, so Perron-Frobenius theory no longer applies.
- QSDs (if they exist) are given by probability measures m such that

$$mP_C(t) = e^{-\nu t}m.$$

- P is now an infinite matrix, so Perron-Frobenius theory no longer applies.
- QSDs (if they exist) are given by probability measures m such that

$$mP_C(t) = e^{-\nu t}m.$$

• The δ_i -LCD (if it exists) is given by m such that

$$mP_C(t) = e^{-\lambda_C t} m.$$

- P is now an infinite matrix, so Perron-Frobenius theory no longer applies.
- QSDs (if they exist) are given by probability measures m such that

$$mP_C(t) = e^{-\nu t}m.$$

• The δ_i -LCD (if it exists) is given by m such that

$$mP_C(t) = e^{-\lambda_C t} m.$$

These expressions involve P and λ_C, which are not known and impossible (or at best very difficult) to find analytically — we need conditions in terms of the q-matrix.

Theorem: If *m* is a ν -invariant probability measure for *Q*, then

$$\nu = \sum_{i \in C} m_i q_{i0}$$

is neccesary and sufficient for m to be a QSD.

Theorem: If *m* is a ν -invariant probability measure for *Q*, then

$$\nu = \sum_{i \in C} m_i q_{i0}$$

is neccesary and sufficient for m to be a QSD.

- This allows us to find all ν -invariant probability measures for Q which are QSDs.
- Another result tells us that a QSD must be ν -invariant for Q.

In order to find these ν -invariant measures for Q we must solve the system

$$\sum_{i \in C} m_i q_{ij} = -\boldsymbol{\nu} m_j, \quad j \in C.$$

In order to find these ν -invariant measures for Q we must solve the system

$$\sum_{i \in C} m_i q_{ij} = -\left(\sum_{i \in C} m_i q_{i0}\right) m_j, \quad j \in C.$$

We can eliminate ν explicitly from the system we need to solve, however this renders the system non-linear in m.

In order to find these ν -invariant measures for Q we must solve the system

$$\sum_{i \in C} m_i q_{ij} = -\left(\sum_{i \in C} m_i q_{i0}\right) m_j, \quad j \in C.$$

We can eliminate ν explicitly from the system we need to solve, however this renders the system non-linear in m.

Finding explicit expressions for QSDs is rarely possible.

Theorem: If the equations

$$\sum_{i \in C} y_i q_{ij} = \kappa y_j, \qquad y_i \ge 0, \ j \in C, \qquad \sum_{i \in C} y_i < \infty$$

have only the trivial solution for some (all) $\kappa > 0$, then all ν -invariant probability measures for Q are also ν -invariant for P and are therefore QSDs.

Theorem: If the equations

$$\sum_{i \in C} y_i q_{ij} = \kappa y_j, \qquad y_i \ge 0, \ j \in C, \qquad \sum_{i \in C} y_i < \infty$$

have only the trivial solution for some (all) $\kappa > 0$, then all ν -invariant probability measures for Q are also ν -invariant for P and are therefore QSDs.

Call this condition the "Reuter FE Condition"

Theorem: If the equations

$$\sum_{i \in C} y_i q_{ij} = \kappa y_j, \qquad y_i \ge 0, \ j \in C, \qquad \sum_{i \in C} y_i < \infty$$

have only the trivial solution for some (all) $\kappa > 0$, then all ν -invariant probability measures for Q are also ν -invariant for P and are therefore QSDs.

- Call this condition the "Reuter FE Condition"
- If this condition holds, all we have to do is find a ν -invariant measure for Q and this is a QSD.

A Minor Problem

Recall that for a ν -invariant measure for Q to exist, it is necessary that $\nu \in (0, \lambda_C]$. However, depending on the process, there are two situations that arise:

- There are finite ν -invariant measures for all $\nu \in (0, \lambda_C]$.
- There is only one finite ν -invariant measure; for $\nu = \lambda_C$.

This gives rise to some important questions:

Some Interesting Questions

When there is more than one QSD,

- For a given initial distribution a, which QSD is the a-LCD?
- For each QSD m, which initial distributions a have m as the a-LCD?

When there is only one QSD,

- Is it the a-LCD for all initial distributions a?
- or are there initial distributions for which there is no LCD?

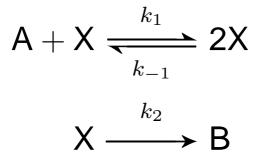
Birth-Death Processes

Theorem: Suppose a birth-death process is absorbed with probability one. Then

- If $\mathcal{D} < \infty$ then there is a unique finite ν -invariant measure (QSD), corresponding to $\nu = \lambda_C$.
- If $\mathcal{D} = \infty$ then either
 - $\lambda_C = 0$ and there are no QSDs, or
 - $\lambda_C > 0$ and there is a one-parameter family of finite ν -invariant measures (QSDs), for $0 < \nu \leq \lambda_C$.

Here

$$\mathcal{D} = \sum_{n=1}^{\infty} \frac{1}{\mu_n \pi_n} \sum_{m=n}^{\infty} \pi_m, \qquad \pi_n = \frac{\lambda_1 \cdots \lambda_{n-1}}{\mu_2 \cdots \mu_n}.$$



The birth and death rates are, respectively,

$$\lambda_i = \alpha k_1 i,$$

and

$$\mu_i = k_2 i + k_{-1} \frac{i(i-1)}{2}.$$

One can show that this process is absorbed with probability one (and is therefore regular).

- One can show that this process is absorbed with probability one (and is therefore regular).
- We can also show that

$$\mathcal{D} = \sum_{n=1}^{\infty} \frac{n\Gamma(n+r)}{[nk_2 + n(n-1)\frac{k_{-1}}{2}](\alpha s)^{n-1}} \sum_{m=n}^{\infty} \frac{(\alpha s)^{m-1}}{m\Gamma(m+r)},$$

- One can show that this process is absorbed with probability one (and is therefore regular).
- We can also show that

$$\mathcal{D} = \sum_{n=1}^{\infty} \frac{n\Gamma(n+r)}{[nk_2 + n(n-1)\frac{k_{-1}}{2}](\alpha s)^{n-1}} \sum_{m=n}^{\infty} \frac{(\alpha s)^{m-1}}{m\Gamma(m+r)},$$

and that this is finite.

- One can show that this process is absorbed with probability one (and is therefore regular).
- We can also show that

$$\mathcal{D} = \sum_{n=1}^{\infty} \frac{n\Gamma(n+r)}{[nk_2 + n(n-1)\frac{k_{-1}}{2}](\alpha s)^{n-1}} \sum_{m=n}^{\infty} \frac{(\alpha s)^{m-1}}{m\Gamma(m+r)},$$

and that this is finite.

So there is a unique quasistationary distribution, which is limiting conditional (at least whenever the initial distribution has finite support).

A Connection

For a Birth-Death process, the Reuter FE conditions hold iff $\mathcal{D} = \infty$.

A Connection

- For a Birth-Death process, the Reuter FE conditions hold iff $\mathcal{D} = \infty$.
- So, let's replace

 ${\cal D}$ diverges (converges)

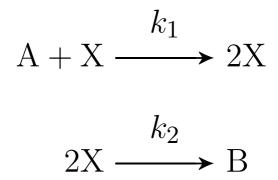
in van Doorns' result with

the Reuter FE condition holds (fails).

Conjecture: Suppose a process is absorbed with probability one. Then

- If the Reuter FE conditions fail then there is only one QSD.
- If the Reuter FE conditions hold, either
 - $\lambda_C = 0$ and there are no QSDs, or
 - $\lambda_C > 0$ and there is a one-parameter family of finite ν -invariant measures (QSDs), $0 < \nu \leq \lambda_C$.

Another Chemical Reaction



This is not a Birth-Death process: it has jumps up of size 1, but jumps down of size 2:

$$q_{i,i+1} = \alpha i k_1,$$

 $q_{i,i-2} = k_2 \frac{i(i-1)}{2}$

Hopefully my conjecture can deal with this!!

Further work

- Domain of attraction problem for LCDs.
- Conjecture is it true? if not, what can we learn from a counterexample?
- Approximation methods: does $m^{(n)} \rightarrow m$ in some sense
 if we solve

$$\sum_{i=1}^{n} m_i^{(n)} q_{ij} = -\nu_1^{(n)} m_j^{(n)}, \quad j = 1, \dots, n$$

with $\nu_1^{(n)}$ the P-F maximal eigenvalue of $Q^{(n)} = (q_{ij}, i, j = 1, ..., n)$, for successively larger n?

The 'renewal dynamical' approach.

The Quasi-Stationary Distribution

