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Introduction
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Outline

• What is a metapopulation?
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Outline

• What is a metapopulation?

• Introduce a model that incorporates habitat dynamics.

• Present remarkable results that allow us to analyse
the model.

• Discuss the effect of habitat dynamics on
metapopulation dynamics and persistence.
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A Metapopulation
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The Model - CTMC

We denote the population size at time t by n(t)
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The Model - CTMC

We denote the population size at time t by n(t) and assume
that (n(t), t ≥ 0) is a Markov chain with transition rates

Q = (q(i, j), i, j ∈ S),

so that q(i, j) represents the rate of transition from state i to
state j, for j 6= i, and q(i, i) = −q(i), where

q(i) :=
∑

j 6=i

q(i, j) (< ∞)

represents the total rate out of state i.
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The Model

• Let M be the total number of patches in the network.
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The Model

• Let M be the total number of patches in the network.

• Let n(t) be the number of occupied patches at time t.

• Let m(t) be the number of suitable patches at time t.

• Assume {(m(t), n(t)), t ≥ 0} is a Markov chain taking
values in S = {(m,n) : 0 ≤ n ≤ m ≤ M}.
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Transition Rates

Stochastic logistic model

q(n, n + 1) = c
n

M
( M − n)

q(n, n − 1) = en
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q(n, n + 1) = c
n

M
( M − n)
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Transition Rates

Stochastic logistic model with varying carrying capacity

q((m,n), (m,n + 1)) = c
n

M
( Mm − n)

q((m,n), (m,n − 1)) = en
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Transition Rates

A metapopulation model with habitat dynamics

q((m,n), (m,n + 1)) = c
n

M
( Mm − n)

q((m,n), (m,n − 1)) = en

q((m,n), (m + 1, n)) = r(M − m)

q((m,n), (m − 1, n)) = s(m − n)

q((m,n), (m − 1, n − 1)) = sn.
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Transition Diagram
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A Simulation

u(t) = m(t)
M

, v(t) = n(t)
M

, M = 500, c = 0.6, e = 0.1, r = 0.5, s = 0.1.
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Applications

• All metapopulations - natural fluctuations.
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Applications

• All metapopulations - natural fluctuations.

• Metapopulations occupying successional habitats.

• Any fragmented population whose habitat
experiences independent, exogenous disturbances;
Many species of butterfly*.

* Hanski, I.A. and Gaggiotti (Eds.) (2004) Ecology Genetics and

Evolution of Metapopulations. Academics Press, London.
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Applications

• All metapopulations - natural fluctuations.

• Metapopulations occupying successional habitats.

• Any fragmented population whose habitat
experiences independent, exogenous disturbances;
Many species of butterfly.

• Standard population modelling - a stochastic logistic
model with varying carrying capacity.
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Density Dependence

• Results of Kurtz* and Barbour**

*Kurtz, T (1970) Solutions of ordinary differential equations as
limits of pure jump Markov processes. J. Appl. Probab. 7, 49-58.

*Kurtz, T (1971) Limit theorems for sequences of jump Markov
processes approximating ordinary differential processes. J. Appl.
Probab. 8, 344-356.

**Barbour, A.D. (1976) Quasi-stationary distributions in Markov
population processes. Adv. in Appl. Probab. 8, 296-314.
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Density Dependence

• Results of Kurtz and Barbour allow us to establish:

1. A unique deterministic approximation to a suitably
scaled version of the original process,
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Density Dependence

• Results of Kurtz and Barbour allow us to establish:

1. A unique deterministic approximation to a suitably
scaled version of the original process,

2. A bivariate normal approximation to the state
probabilites of the original process, and

3. For how long this normal approximation is an
adequate approximation to the original process.
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What is Density Dependence?

Definition [Kurtz (1970)]
A one-parameter family of Markov chains {Pν , ν > 0} with state space
Sν ⊂ Z

D is called density dependent if there exists a set E ⊆ R
D and a

continuous function f : E × Z
D → R, such that

qν(k, k + l) = νf

(

k

ν
, l

)

, l 6= 0.

Remark. Thus, the family of Markov chains is density dependent if the
transition rates of the corresponding “density process” Xν(·), defined
by

Xν(t) :=
Pν(t)

ν
, t ≥ 0,

depend on the present state k only through the density k/ν.
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Density Dependent

If we take M , the total number of patches in the metapopulation
network, as our index parameter and define the scaled process
xM (t) = {u(t), v(t)} = {m(t)/M, n(t)/M} and its state space
E = {(u, v) : 0 ≤ v ≤ u ≤ 1}, then we may define a continuous
function f : E × Z

2 → R by

f(x, l) =







































r(1 − u) if l = (1, 0)

s(u − v) if l = (−1, 0)

sv if l = (−1,−1)

cv (u − v) if l = (0, 1)

ev if l = (0,−1).
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Functional law of large numbers

Theorem [Kurtz (1970)]
Suppose that f(x, l) is bounded for each l and that F , where
F (x) =

∑

l
lf(x, l), is Lipschitz continuous on E. Then, if

lim
ν→∞

Xν(0) = x0,

we have, for fixed τ > 0 and for all ǫ > 0, that

lim
ν→∞

Pr

(

sup
t≤τ

|Xν(t) − X(t, x0)| > ǫ

)

= 0,

where X(·, x) is the unique trajectory satisfying

X(0, x) = x, X(t, x) ∈ E, 0 ≤ t ≤ τ,
∂

∂t
X(t, x) = F (X(t, x)).
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Law of Large Numbers

1

N

N
∑

i=1

xi → µ
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Law of Large Numbers

M=50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

MASCOS MASCOS Working Seminar Series - 2004 - Page 15



Law of Large Numbers

M=200
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Law of Large Numbers

M=800
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Law of Large Numbers

M=3200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

MASCOS MASCOS Working Seminar Series - 2004 - Page 15



Law of Large Numbers

M=12800
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Law of Large Numbers

The densities

m(t)

M
→ u(t)

n(t)

M
→ v(t)

where u(t) and v(t) are given by a unique deterministic
model.
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Deterministic Approximation

du

dt
= r − (r + s)u

dv

dt
= cv(u − v) − (e + s)v
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Deterministic Approximation

du

dt
= r − (r + s)u

dv

dt
= cv(u − v) − (e + s)v

Studied previously by Johnson*.
*Johnson, M.P. (2000) The influence of patch demographics on

metapopulations, with particular reference to successional landscapes.

Oikos 88, 67-74.
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Deterministic Approximation

du

dt
= r − (r + s)u

dv

dt
= cv(u − v) − (e + s)v

Studied previously by Johnson: has non-trivial fixed point
(

r

r + s
,

r

r + s
− e + s

c

)

and persistence condition

r

r + s
>

e + s

c
.
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Deterministic Model
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Variation

M=12800
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Central Limit Theorem

1

N

N
∑

i=1

xi → µ

√
N

(

1

N

N
∑

i=1

xi − µ

)

→ N(0, σ2)
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Functional central limit theorem

[Kurtz (1971)]

√
ν (Xν(t) − X(t, x0)) → Gaussian Diffusion

√
ν (Xν(t) − x∗) → N(0,Σt)

Long-term

E(Xν) ≈ x∗

Var(Xν) ≈ 1
ν
Σ where Σ = limt→∞ Σt.
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Normal Approximation

• The second set of results of Kurtz and Barbour allow
us to approximate the state-probabilities of the original
process, corresponding to the number of suitable and
occupied patches, by a normal distribution.
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Normal Approximation

• The second set of results of Kurtz and Barbour allow
us to approximate the state-probabilities of the original
process, corresponding to the number of suitable and
occupied patches, by a normal distribution.

• For our model this is a bivariate normal distribution
centered at the fixed point of the deterministic model.
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Normal Surface
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Normal Contours
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Variance

• The normal approximation gives the likelihood
function and thus provides a framework for statistical
inference.
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• We now have the variance in the number of suitable
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Variance

• The normal approximation gives the likelihood
function and thus provides a framework for statistical
inference.

• We now have the variance in the number of suitable
and occupied patches.

• We can now take into account the variability of the
population when making ecological assessments.

MASCOS MASCOS Working Seminar Series - 2004 - Page 24



Confidence Intervals
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Increase in Variance
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Comparison to Existing Models

Model Fixed Point Persistence Condition

New Model
(
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, r
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− e+s
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c > e + s

SLM with e + s

& reduced habitat
r

r+s

[

1 − e+s
c

]

c > e + s

MASCOS MASCOS Working Seminar Series - 2004 - Page 27



Comparison of Models
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Comparison of Models
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