Diffusion Approximation for a Metapopulation Model with Habitat Dynamics

Joshua Ross

http://www.maths.uq.edu.au/~jvr

Discipline of Mathematics and MASCOS University of Queensland

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

MASCOS Working Seminar Series - 2004 - Page 1

Introduction

• What is a metapopulation?

- What is a metapopulation?
- Introduce a model that incorporates habitat dynamics.

- What is a metapopulation?
- Introduce a model that incorporates habitat dynamics.
- Present remarkable results that allow us to analyse the model.

- What is a metapopulation?
- Introduce a model that incorporates habitat dynamics.
- Present remarkable results that allow us to analyse the model.
- Discuss the effect of habitat dynamics on metapopulation dynamics and persistence.

A Metapopulation

The Model - CTMC

We denote the population size at time t by n(t)

We denote the population size at time t by n(t) and assume that $(n(t), t \ge 0)$ is a Markov chain with transition rates

 $Q=(q(i,j),i,j\in S),$

We denote the population size at time *t* by n(t) and assume that $(n(t), t \ge 0)$ is a Markov chain with transition rates

 $Q = (q(i,j), i, j \in S),$

so that q(i, j) represents the rate of transition from state i to state j, for $j \neq i$, and q(i, i) = -q(i), where

$$q(i) := \sum_{j \neq i} q(i,j) \ (<\infty)$$

represents the total rate out of state *i*.

MASCOS Working Seminar Series - 2004 - Page 5

• Let M be the total number of patches in the network.

- Let M be the total number of patches in the network.
- Let n(t) be the number of occupied patches at time t.

- Let M be the total number of patches in the network.
- Let n(t) be the number of occupied patches at time t.
- Let m(t) be the number of suitable patches at time t.

- Let M be the total number of patches in the network.
- Let n(t) be the number of occupied patches at time t.
- Let m(t) be the number of suitable patches at time t.
- Assume $\{(m(t), n(t)), t \ge 0\}$ is a Markov chain taking values in $S = \{(m, n) : 0 \le n \le m \le M\}$.

Stochastic logistic model

$$q(n, n+1) = c \frac{n}{M} (M - n)$$
$$q(n, n-1) = en$$

Stochastic logistic model

$$q(n, n+1) = c \frac{n}{M} (M - n)$$
$$q(n, n-1) = en$$

Stochastic logistic model with varying carrying capacity

$$q((m,n), (m, n+1)) = c \frac{n}{M} (m - n)$$

q((m,n),(m,n-1)) = en

A metapopulation model with habitat dynamics

$$q((m,n), (m, n+1)) = c\frac{n}{M}(m-n)$$
$$q((m,n), (m, n-1)) = en$$
$$q((m,n), (m+1,n)) = r(M-m)$$
$$q((m,n), (m-1,n)) = s(m-n)$$
$$q((m,n), (m-1, n-1)) = sn.$$

Transition Diagram

A Simulation

$$u(t) = \frac{m(t)}{M}, v(t) = \frac{n(t)}{M}, M = 500, c = 0.6, e = 0.1, r = 0.5, s = 0.1.$$

• All metapopulations - natural fluctuations.

- All metapopulations natural fluctuations.
- Metapopulations occupying successional habitats.

Applications

- All metapopulations natural fluctuations.
- Metapopulations occupying successional habitats.
- Any fragmented population whose habitat experiences independent, exogenous disturbances; Many species of butterfly*.

* Hanski, I.A. and Gaggiotti (Eds.) (2004) *Ecology Genetics and Evolution of Metapopulations.* Academics Press, London.

Applications

- All metapopulations natural fluctuations.
- Metapopulations occupying successional habitats.
- Any fragmented population whose habitat experiences independent, exogenous disturbances; Many species of butterfly.
- Standard population modelling a stochastic logistic model with varying carrying capacity.

Results of Kurtz* and Barbour**

*Kurtz, T (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. *J. Appl. Probab.* 7, 49-58.

*Kurtz, T (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. *J. Appl. Probab.* 8, 344-356.

**Barbour, A.D. (1976) Quasi-stationary distributions in Markov population processes. *Adv. in Appl. Probab.* 8, 296-314.

- Results of Kurtz and Barbour allow us to establish:
 - 1. A unique deterministic approximation to a suitably scaled version of the original process,

- Results of Kurtz and Barbour allow us to establish:
 - 1. A unique deterministic approximation to a suitably scaled version of the original process,
 - 2. A bivariate normal approximation to the state probabilites of the original process, and

- Results of Kurtz and Barbour allow us to establish:
 - 1. A unique deterministic approximation to a suitably scaled version of the original process,
 - 2. A bivariate normal approximation to the state probabilites of the original process, and
 - 3. For how long this normal approximation is an adequate approximation to the original process.

What is Density Dependence?

Definition [Kurtz (1970)]

A one-parameter family of Markov chains $\{P_{\nu}, \nu > 0\}$ with state space $S_{\nu} \subset \mathbb{Z}^{D}$ is called density dependent if there exists a set $E \subseteq \mathbb{R}^{D}$ and a continuous function $f : E \times \mathbb{Z}^{D} \to \mathbb{R}$, such that

$$q_{\nu}(k,k+l) = \nu f\left(\frac{k}{\nu},l\right), \qquad l \neq 0.$$

Remark. Thus, the family of Markov chains is density dependent if the transition rates of the corresponding "density process" $X_{\nu}(\cdot)$, defined by

$$X_{\nu}(t) := \frac{P_{\nu}(t)}{\nu}, \qquad t \ge 0,$$

depend on the present state k only through the density k/ν .

MASCOS Working Seminar Series - 2004 - Page 12

If we take M, the total number of patches in the metapopulation network, as our index parameter and define the scaled process $x_M(t) = \{u(t), v(t)\} = \{m(t)/M, n(t)/M\}$ and its state space $E = \{(u, v) : 0 \le v \le u \le 1\}$, then we may define a continuous function $f : E \times \mathbb{Z}^2 \to \mathbb{R}$ by

$$f(x,l) = \begin{cases} r(1-u) & \text{if } l = (1,0) \\ s(u-v) & \text{if } l = (-1,0) \\ sv & \text{if } l = (-1,-1) \\ cv (u-v) & \text{if } l = (0,1) \\ ev & \text{if } l = (0,-1). \end{cases}$$

Functional law of large numbers

Theorem [Kurtz (1970)]

Suppose that f(x, l) is bounded for each l and that F, where $F(x) = \sum_{l} lf(x, l)$, is Lipschitz continuous on E. Then, if

 $\lim_{\nu \to \infty} X_{\nu}(0) = x_0,$

we have, for fixed $\tau > 0$ and for all $\epsilon > 0$, that

$$\lim_{\nu \to \infty} \Pr\left(\sup_{t \le \tau} |X_{\nu}(t) - X(t, x_0)| > \epsilon \right) = 0,$$

where $X(\cdot, x)$ is the unique trajectory satisfying

$$X(0,x) = x, \quad X(t,x) \in E, \ 0 \le t \le \tau, \quad \frac{\partial}{\partial t} X(t,x) = F(X(t,x)),$$

MASCOS Working Seminar Series - 2004 - Page 14

$$\frac{1}{N}\sum_{i=1}^{N} x_i \to \mu$$

MASCOS Working Seminar Series - 2004 - Page 15

M=200

M=800

M=3200

M=12800

MASCOS Working Seminar Series - 2004 - Page 15

The densities

$$\frac{m(t)}{M} \to u(t)$$

$$\frac{n(t)}{M} \to v(t)$$

where u(t) and v(t) are given by a unique deterministic model.

MASCOS Working Seminar Series - 2004 - Page 15

Deterministic Approximation

$$\frac{du}{dt} = r - (r+s)u$$
$$\frac{dv}{dt} = cv(u-v) - (e+s)v$$

Deterministic Approximation

$$\frac{du}{dt} = r - (r+s)u$$
$$\frac{dv}{dt} = cv(u-v) - (e+s)v$$

Studied previously by Johnson*.

*Johnson, M.P. (2000) The influence of patch demographics on metapopulations, with particular reference to successional landscapes. *Oikos* 88, 67-74.

Deterministic Approximation

$$\frac{du}{dt} = r - (r+s)u$$
$$\frac{dv}{dt} = cv(u-v) - (e+s)v$$

Studied previously by Johnson: has non-trivial fixed point

$$\left(\frac{r}{r+s}, \frac{r}{r+s} - \frac{e+s}{c}\right)$$

and persistence condition

$$\frac{r}{r+s} > \frac{e+s}{c}.$$

MASCOS Working Seminar Series - 2004 - Page 16

Deterministic Model

MASCOS Working Seminar Series - 2004 - Page 17

Variation

M=12800

MASCOS Working Seminar Series - 2004 - Page 18

Central Limit Theorem

$$\frac{1}{N}\sum_{i=1}^{N} x_i \to \mu$$

$$\sqrt{N}\left(\frac{1}{N}\sum_{i=1}^{N}x_i-\mu\right) \to N(0,\sigma^2)$$

MASCOS Working Seminar Series - 2004 - Page 19

Functional central limit theorem

[Kurtz (1971)]

$$\sqrt{\nu} \left(X_{\nu}(t) - X(t, x_0) \right) \rightarrow$$
Gaussian Diffusion

$$\sqrt{\nu} \left(X_{\nu}(t) - x^* \right) \to N(0, \Sigma_t)$$

Long-term

 $\mathsf{E}(X_{\nu}) \approx x^*$ $\mathsf{Var}(X_{\nu}) \approx \frac{1}{\nu} \Sigma$ where $\Sigma = \lim_{t \to \infty} \Sigma_t$.

MASCOS Working Seminar Series - 2004 - Page 20

Normal Approximation

 The second set of results of Kurtz and Barbour allow us to approximate the state-probabilities of the original process, corresponding to the number of suitable and occupied patches, by a normal distribution.

Normal Approximation

- The second set of results of Kurtz and Barbour allow us to approximate the state-probabilities of the original process, corresponding to the number of suitable and occupied patches, by a normal distribution.
- For our model this is a bivariate normal distribution centered at the fixed point of the deterministic model.

Normal Surface

Normal Contours

 The normal approximation gives the likelihood function and thus provides a framework for statistical inference.

Variance

- The normal approximation gives the likelihood function and thus provides a framework for statistical inference.
- We now have the variance in the number of suitable and occupied patches.

Variance

- The normal approximation gives the likelihood function and thus provides a framework for statistical inference.
- We now have the variance in the number of suitable and occupied patches.
- We can now take into account the variability of the population when making ecological assessments.

Confidence Intervals

Increase in Variance

Comparison to Existing Models

Model	Fixed Point	Persistence Condition
New Model	$\left(\frac{r}{r+s}, \frac{r}{r+s} - \frac{e+s}{c}\right)$	$\frac{r}{r+s} > \frac{e+s}{c}$
Stochastic Logistic Model with $e + s$	$1 - \frac{e+s}{c}$	c > e + s
SLM with $e + s$ & reduced habitat	$\frac{r}{r+s} \left[1 - \frac{e+s}{c} \right]$	c > e + s

Comparison of Models

Comparison of Models

MASCOS Working Seminar Series - 2004 - Page 28

Acknowledgements

Phil Pollett and Hugh Possingham

Ben Cairns and David Sirl

The University of Queensland

and

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems