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Total cost

Let X(t) be the population density at time t.

Let c(x) be the cost per unit time of maintaining the
population when its density is x units above a threshold γ.

Then, if τ is the time to extinction,
∫ τ

0
c(X(t) − γ)1{X(t)>γ} dt

is the total cost over the life of the population.
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A population process
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 ∫
0
τ   N ( X(t) − γ ) 1

{ X(t) > γ } dt = 11.8 
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Ingredients

A random process (X(t), t ≥ 0) in continuous time

A set of states A

The (random) time τ to first exit from A

The cost (per unit time) fx of being in state x

The “path integral”

Γ =

∫ τ

0
fX(t) dt,

the total cost incurred before leaving A (also random)
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Other examples

Consider a dam with finite capacity V , and let X(t) be
the water level at time t.

We might wish to estimate the total time for which the
level was below a given value γ,

Γ =

∫ τ

0
1{X(t)<γ} dt,

where τ is (say) the time to reach capacity or to empty
(whichever occurs first).
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Other examples

Let (S(t), I(t)) be the number of susceptibles and
infectives in an epidemic at time t.

If τ is the period of infection and f(s,i) = i, then Γ is the
total amount of infection:

Γ =

∫ τ

0
I(t) dt.
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 Γ = ∫
0
τ  I(t) dt = 7591 (cell days) 
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The problem

Our problem is to determine the expected value, and the
distribution of the total cost

Γ =

∫ τ

0
fX(t) dt,

where recall that τ is the time to first exit from a set A and
fx is cost per unit time of being in state x.

For simplicity, suppose that X(t) takes values in
S = {0, 1, . . . }.

For example, X(t) might be the number in a population at
time t, and A = {1, 2, . . . }, so that τ is the time to extinction.
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A first attempt at evaluating E(Γ)

Let Tj be the total time that the process spends in state j

during the period up to time τ and let Nj be the number of
visits to j during that period. Then,

Γ =
∑

j∈A

fjTj

Γ =
∑

j∈A

fjTj and Tj =

Nj∑

n=1

Xjn,

where Xjn, n = 1, 2, . . . , are the successive occupancy
times for state j. Then, under mild conditions,
E(Γ) =

∑
j∈A fjE(Nj)µj , where µj is the mean occupancy

time for state j.
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Markovian models

We will assume that (X(t), t ≥ 0) is a Markov chain with
transition rates

Q = (qij , i, j ∈ S),

so that qij represents the rate of transition from state i to
state j, for j 6= i, and qii = −qi, where

qi :=
∑

j 6=i

qij (< ∞)

represents the total rate out of state i.
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Markovian models

An example is the birth-death process, which has

qi,i+1 = λi (birth rates)

qi,i−1 = µi (death rates),

with µ0 = 0 and otherwise 0 (qi = λi + µi):

Q =




−λ0 λ0 0 0 · · ·

µ1 −(λ1 + µ1) λ1 0 · · ·

0 µ2 −(λ2 + µ2) λ2 · · ·
...

...
... 0

. . .



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Example

The Stochastic Logistic Model (simulated earlier) is a birth-
death process on S = {0, 1, . . . , N}, with

λi =
λ

N
i(N − i) and µi = µi,

where λ, µ > 0.
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Interlude

These birth and death rates can be written

λi

N
= λ

(
i

N

)(
1 −

i

N

)
and

µi

N
= µ

(
i

N

)

Intuition: for large N the population density X(t)/N
becomes more deterministic (non-random):

dx

dt
= λ(x) − µ(x),

where
λ(x) = λx (1 − x) and µ(x) = µx.
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Interlude

This is from ...

P.F. Verhulst, Notice sur la loi que la population suit
dans son accroisement, Corr. Math. et Phys. X
(1838), 113–121.

We learn that

p(t) =
mp0

np0 + (m − np0)e−mt
, t ≥ 0.

For us,

X(t)

N
∼

(1 − ρ)x0

x0 + (1 − ρ − x0)e−λ(1−ρ)t
, where ρ =

µ

λ
.
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A population process
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Example
The Stochastic Logistic Model (simulated earlier) is a birth-
death process on S = {0, 1, . . . , N}, with

λi =
λ

N
i(N − i) and µi = µi,

where λ, µ > 0.

The epidemic model mentioned earlier is a two-dimensional
Markov chain with transition rates

q(s i),(s+1 i) = αs, q(s i),(s i−1) = γi,

q(s i),(s−1 i+1) = βsi,

where α, γ, β > 0 are the splitting, removal and infection
rates.
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The expected value of Γ

Returning to our general Markov chain, let
ei = Ei(Γ) := E(Γ|X(0) = i), and condition on the time of the
first jump and the state visited at that time, to get

Ei (Γ) =

∫ ∞

0

∑

k 6=i

(
fi

qi
+ Ek (Γ)

)
qik

qi
qie

−qiu du,

which leads to
qiei = fi +

∑

k 6=i

qikek,

so that ∑

k

qikek + fi = 0.
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The expected value of Γ

We can do better:

Theorem 1 e = (ei, i ∈ A), where ei = Ei(Γ), is the
minimal non-negative solution to

∑

k∈A

qikzk + fi = 0, i ∈ A,

in the sense that e satisfies these equations, and, if
z = (zi, i ∈ A) is any non-negative solution, then ei ≤ zi for
all i ∈ A.
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The expected value of Γ

So, we solve a system of linear equations to obtain the
vector of expected total costs starting in the various states:

Qz = −f
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The expected value of Γ

So, we solve a system of linear equations to obtain the
vector of expected total costs starting in the various states:

Qz = −f
Transition rates
restricted to A

(the model) Unit costs

Expected total cost
(minimal solution)
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Birth-death processes

Let’s apply this to birth-death processes:

Q =




−λ0 λ0 0 0 · · ·

µ1 −(λ1 + µ1) λ1 0 · · ·

0 µ2 −(λ2 + µ2) λ2 · · ·
...

...
... 0

. . .




Assume that the birth rates (λi, i ≥ 1) and the death rates
(µi, i ≥ 0) are all strictly positive, except that λ0 = 0. So, all
states in A = {1, 2, . . . } intercommunicate, and 0 is an
absorbing state (corresponding to population extinction).
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Birth-death processes

Define (πi, i ≥ 1) by π1 = 1 and

πi =
i∏

j=2

λj−1

µj
, i ≥ 2,

and assume that
∞∑

i=1

1

µiπi
= ∞,

a condition that corresponds to extinction being certain.
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Birth-death processes

On applying Theorem 1 we get:

Proposition The expected cost up to the time of
extinction, starting in state i (≥ 1), is given by

Ei(Γ) =
i∑

j=1

1

µjπj

∞∑

k=j

fkπk,

this being finite if and only if
∑∞

k=1 fkπk < ∞.
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Birth-death processes
In the finite state-space case (S = {0, 1, . . . , N}), we get

Ei(Γ) =
i∑

j=1

1

µjπj

N∑

k=j

fkπk, i = 1, 2, . . . , N.

For the Stochastic Logistic Model,

Ei(Γ) =
1

µ

i∑

j=1

N−j∑

k=0

(
1

Nρ

)k fj+k

j + k

(N − j)!

(N − j − k)!
,

where ρ = µ/λ. If ρ < 1 (the interesting case),

Ei(Γ) ∼
ρ

µ(1 − ρ)

(
e−(1−ρ)

ρ

)N √
2π

N

i∑

j=1

fjρ
j as N → ∞.
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The distribution of Γ

Can we evaluate the distribution of Γ, that is,

Pr(Γ ≤ x|X(0) = i) ?

I will explain how to evaluate yi(θ) = Ei(e
−θΓ), the

Laplace-Steiltjes Transform (LST) of the distribution:

yi(θ) =

∫ ∞

0
e−θx d Pr(Γ ≤ x|X(0) = i).
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The distribution of Γ

An argument similar to that used to evaluate Ei(Γ) leads to:

Theorem 2 For each θ > 0, y(θ) = (yi(θ), i ∈ S) is the
maximal solution to

∑

k∈S

qikzk = θfizi, i ∈ A,

with 0 ≤ zi ≤ 1 for i ∈ A and zi = 1 for i /∈ A.
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A catastrophe process

Assume that the transition rates have the form

qij =





iρa, i ≥ 0, j = i + 1,

−iρ, i ≥ 0, j = i,

iρdi−j , i ≥ 2, 1 ≤ j < i,

iρ
∑

k≥i dk, i ≥ 1, j = 0,

with all other transition rates equal to 0. Here ρ and a are
positive, di is positive for at least one i in A = {1, 2, . . . } and
a +

∑∞
i=1 di = 1.

Clearly 0 is an absorbing state for the process and A is a
communicating class.
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A catastrophe process

We will consider only the subcritical case, where the drift D,
given by D = a −

∑∞
i=1 idi, is strictly negative and extinction

is certain.

Let b(s) = d(s) − s, where d is the probability generating
function d(s) = a +

∑∞
i=1 dis

i+1, |s| < 1.

There is a unique solution, σ, to b(s) = 0 on the interval
0 < s < 1.

MASCOS MASCOS Working Seminar 20/08/2004 - Page 41



A catastrophe process

We can evaluate Ei(e
−θΓ) for specific choices of f .

For example, take fi = i.

We seek the maximal solution to
∞∑

j=0

qijzj = θizi, i ≥ 1,

satisfying 0 ≤ zi ≤ 1 for i ≥ 1 and z0 = 1.
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A catastrophe process

We can evaluate Ei(e
−θΓ) for specific choices of f .

For example, take fi = i.

We seek the maximal solution to

ρazi+1 − ρzi + ρ

i−1∑

j=1

di−jzj + ρz0

∞∑

j=i

dj = θzi, i ≥ 1,

satisfying 0 ≤ zi ≤ 1 for i ≥ 1 and z0 = 1.
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A catastrophe process

Multiplying by si−1 and summing over i gives

∞∑

i=1

Ei(e
−θΓ)si−1 =

1

1 − s
−

θ(γθ − s)

(1 − γθ)(1 − s)(ρb(s) − θs)
,

where γθ is the unique solution to ρb(s) = θs on the interval
0 < s < σ, where σ itself is the unique solution to b(s) = 0 on
the interval 0 < s < 1.
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A catastrophe process

In the case of “geometric catastrophes” (di = d(1 − q)qi−1,
i ≥ 1, where d > 0 satisfies a + d = 1, and 0 ≤ q < 1), we get

Ei(e
−θΓ) =

β(θ) − q

1 − q
(β(θ))i−1 , i ≥ 1,

where β(θ) is the smaller of the two zeros of
aρs2 − (ρ(1 + qa) + θ)s + ρ(d + qa) + qθ.
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Workshop

ARC Centre of Excellence for Mathematics and Statistics of
Complex Systems

Workshop on Metapopulations
The University of Queensland
Thursday 2nd September 2004

Invited speakers: Andrew Barbour (University of Zürich)
Ben Cairns, Phil Pollett, Hugh Possingham, Tracey Regan,
Joshua Ross, Severine Vuilleumier and Chris Wilcox
(University of Queensland).

URL: http://www.maths.uq.edu.au/˜pkp/MetaPop04.html

MASCOS MASCOS Working Seminar 20/08/2004 - Page 45


	A population process
	A population process
	Total cost
	A population process
	Ingredients
	Ingredients
	Ingredients
	Ingredients
	Ingredients

	Other examples
	Dam
	Dam
	Dam
	Dam
	Dam
	Other examples
	Epidemic
	Epidemic
	Epidemic
	The problem
	A first attempt at evaluating $E(Gamma )$
	A first attempt at evaluating $E(Gamma )$
	A first attempt at evaluating $E(Gamma )$

	Markovian models
	Markovian models
	Example
	Interlude
	Interlude
	Interlude
	Interlude
	A population process
	Example
	Example

	The expected value of $Gamma $
	The expected value of $Gamma $
	The expected value of $Gamma $
	The expected value of $Gamma $
	The expected value of $Gamma $
	The expected value of $Gamma $
	Birth-death processes
	Birth-death processes
	Birth-death processes
	Birth-death processes
	The distribution of $Gamma $
	The distribution of $Gamma $

	The distribution of $Gamma $
	A catastrophe process
	A catastrophe process
	A catastrophe process
	A catastrophe process

	A catastrophe process
	A catastrophe process
	Workshop

