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A metapopulation model
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Cast of ‘characters’

Some basic notation...
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• X = [X Y ]T . The state of the metapopulation:

• X is the number of suitable patches;
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Cast of ‘characters’

Some basic notation...

• N . The total (and constant) number of habitat patches.

• X = [X Y ]T . The state of the metapopulation:

• X is the number of suitable patches;

• Y is the number of occupied patches.

• r, c, e, γ, p. Rates and other parameters.
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Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:
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Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

• Each unsuitable patch recovers in IID time ∼ Exp(r)
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Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

• Each unsuitable patch recovers at rate r
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Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

• (x, y) → (x + 1, y) at rate r (N − x),
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Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

• (x, y) → (x + 1, y) at rate r (N − x),

• Each occupied patch produces migrants at rate c,
which may colonise empty, suitable patches
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Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

• (x, y) → (x + 1, y) at rate r (N − x),

• (x, y) → (x, y + 1) at rate cy
(

x
N
− y

N

)

,
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Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

• (x, y) → (x + 1, y) at rate r (N − x),

• (x, y) → (x, y + 1) at rate cy
(

x
N
− y

N

)

,

• Each local population goes extinct at rate e
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Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

• (x, y) → (x + 1, y) at rate r (N − x),

• (x, y) → (x, y + 1) at rate cy
(

x
N
− y

N

)

,

• (x, y) → (x, y − 1) at rate ey.

MASCOS Workshop 14 May 2004 – p. 4/22



Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

• (x, y) → (x + 1, y) at rate r (N − x),

• (x, y) → (x, y + 1) at rate cy
(

x
N
− y

N

)

,

• (x, y) → (x, y − 1) at rate ey.

on S = {(x, y) | x, y ∈ N, 0 ≤ y ≤ x ≤ N}.
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Catastrophic Events

Catastrophic jumps occur at a constant rate, γ,
affecting each habitat patch independently.
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Catastrophic Events

Catastrophic jumps occur at a constant rate, γ,
affecting each habitat patch independently.
Catastrophes are binomial in size...

(x, y) → (x − (i + j), y − j) at rate

• p is the probability that any occupied patch is
rendered unsuitable by a catastrophe.
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Catastrophic Events

Catastrophic jumps occur at a constant rate, γ,
affecting each habitat patch independently.
Catastrophes are binomial in size...

(x, y) → (x − (i + j), y − j) at rate

γ

(

x − y

i

)(

y

j

)

pi+j(1 − p)x−i−j.

• p is the probability that any occupied patch is
rendered unsuitable by a catastrophe.
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Finite State-space Processes

When N is finite, we can hope to evaluate
measures of interest directly.

• Extinction times (a.k.a. first passage or ’hitting’ times)
are almost surely finite!

• Quasi-stationary distributions exist!
(limiting distribution conditional on non-extinction)
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Finite State-space Processes

When N is finite, we can hope to evaluate
measures of interest directly.

• Extinction times (a.k.a. first passage or ’hitting’ times)
are almost surely finite!

• Quasi-stationary distributions exist!
(limiting distribution conditional on non-extinction)

If these are easy to calculate (or approximate),

we can use them to analyse the system.
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Extinction Times

QCτ = −1

(Generally, take the minimal,

non-negative solution.)
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Extinction Times
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Quasi-stationary distributions

QCm = −λm

(λ is the eigenvalue with max. real part.)
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Quasi-stationary distributions
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Difficulties asN ↑

Direct computation of hitting times, etc.,
becomes infeasible as N gets large:
#S = 1

2
(N + 1)(N + 2).
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Difficulties asN ↑

Direct computation of hitting times, etc.,
becomes infeasible as N gets large:
#S = 1

2
(N + 1)(N + 2).

• To make progress, we need good
approximations: e.g. stochastic differential
equations for the limit as N → ∞?

MASCOS Workshop 14 May 2004 – p. 9/22



A Deterministic Limit

• A little ad hocery: assume for the moment
that there are no catastrophes.
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A Deterministic Limit

• A little ad hocery: assume for the moment
that there are no catastrophes.

• Let X(0) = X(s, 0). It is possible to show that
X(s, t)/N → U(s, t), satisfying the system of ODEs...

with initial conditions U(s, 0) = limN→∞ X(s, 0)/N .
(Kurtz, 1970)
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A Deterministic Limit

• A little ad hocery: assume for the moment
that there are no catastrophes.

• Let X(0) = X(s, 0). It is possible to show that
X(s, t)/N → U(s, t), satisfying the system of ODEs...

a(U) =





∂u/∂t

∂v/∂t



 =





r(1 − u)

cv(u − v) − ev



 ,

with initial conditions U(s, 0) = limN→∞ X(s, 0)/N .
(Kurtz, 1970)
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Catastrophes in the Limit

Treating catastrophes as a separate
component...

• The arrival rate of catastrophes is unaffected
by scaling.

• As N → ∞, if T1 is a catastrophe time,

X(s, T1)

N

P
−→ (1 − p)U(s, T1−).
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A Stochastic Integral Equation

The limiting, scaled process:

dU(s, t) = a(U(s, t))dt+

∫

M

c(U(s, t),m)P[dm, dt; γ]

• c(U, dm) describes effect of catastrophes

• Poisson random measure P describes arrival
of catastrophes and their magnitudes, m.

• Generalised Itô fomula gives first passage
times. (Gihman & Skorohod, 1972)
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First Passage Times

First passage times, τG

(

U0

)

, into a closed set
S\G (i.e. out of G), starting from U0, are a twice
continuously differentiable solution, g(U), to

(Lg)(U) = −1,U ∈ G

g(U) = 0,U /∈ G,
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First Passage Times

First passage times, τG

(

U0

)

, into a closed set
S\G (i.e. out of G), starting from U0, are a twice
continuously differentiable solution, g(U), to

(Lg)(U) = −1,U ∈ G

g(U) = 0,U /∈ G,

• In the present case, (Lh)(U) is given by

(Lh)(U) = ∇h(U)·a(U)−γh(U)+γh
(

(1−p)U
)

.

MASCOS Workshop 14 May 2004 – p. 13/22



Solving First Passage Times

Slightly different conditions:

• g(U) should be continuous along all
trajectories U(s, t), and piecewise smooth
along other smooth paths.

• g(U) should be bounded for all U.
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Solving First Passage Times

Slightly different conditions:

• g(U) should be continuous along all
trajectories U(s, t), and piecewise smooth
along other smooth paths.

• g(U) should be bounded for all U.

Solve in ‘steps’: Gn is the region from which at
least n catastrophes are needed to leave G.
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Solving First Passage Times

The solution has the form

e−γtg
(

U(s, t)
)

= −

∫ t

0

γe−γrg
(

(1 − p)U(s, r)
)

dr

− γ−1
[

1 − e−γt
]

+ C1(s),
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Solving First Passage Times

The solution has the form

e−γtg
(

U(s, t)
)

= −

∫ t

0

γe−γrg
(

(1 − p)U(s, r)
)

dr

− γ−1
[

1 − e−γt
]

+ C1(s),

but we want a bounded solution, so set

C1(s) =
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Solving First Passage Times

The solution has the form

e−γtg
(

U(s, t)
)

= −

∫ t

0

γe−γrg
(

(1 − p)U(s, r)
)

dr

− γ−1
[

1 − e−γt
]

+ C1(s),

but we want a bounded solution, so set

C1(s) =

∫ ∞

0

γe−γrg
(

(1 − p)U(s, r)
)

dr + γ−1.
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Solving First Passage Times

Hence (along trajectories that remain within G)

g
(

U(s, t)
)

=
1

γ
+ eγt

∫ ∞

t

γe−γrg
(

(1 − p)U(s, r)
)

dr.
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Solving First Passage Times

Hence (along trajectories that remain within G)

g
(

U(s, t)
)

=
1

γ
+ eγt

∫ ∞

t

γe−γrg
(

(1 − p)U(s, r)
)

dr.

Clearly, C1(s) = g(s, 0). We can also confirm:
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Solving First Passage Times

Hence (along trajectories that remain within G)

g
(

U(s, t)
)

=
1

γ
+ eγt

∫ ∞

t

γe−γrg
(

(1 − p)U(s, r)
)

dr.

Clearly, C1(s) = g(s, 0). We can also confirm:

• if G = G1, g(U) = γ−1 for all U on trajectories
remaining in G;
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Solving First Passage Times

Hence (along trajectories that remain within G)

g
(

U(s, t)
)

=
1

γ
+ eγt

∫ ∞

t

γe−γrg
(

(1 − p)U(s, r)
)

dr.

Clearly, C1(s) = g(s, 0). We can also confirm:

• if G = G1, g(U) = γ−1 for all U on trajectories
remaining in G;

• if U∞ = limt→∞ U(s, t) is in G, then
g(s,∞−) = γ−1 + g

(

(1 − p)U∞

)

.
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Solutions: A Special Case

If the fixed point is on the first ‘step’,
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Solutions: A Special Case

If the fixed point is on the first ‘step’,

• g
(

U(s, t)
)

= γ−1, for all trajectories not
leaving G1 in finite time,
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Solutions: A Special Case

If the fixed point is on the first ‘step’,

• g
(

U(s, t)
)

= γ−1, for all trajectories not
leaving G1 in finite time,

• solutions for trajectories heading out of G
using the deterministic hitting time and a
truncated exponential law, and
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Solutions: A Special Case

If the fixed point is on the first ‘step’,

• g
(

U(s, t)
)

= γ−1, for all trajectories not
leaving G1 in finite time,

• solutions for trajectories heading out of G
using the deterministic hitting time and a
truncated exponential law, and

• a system of DEs [∂u/∂t, ∂v/∂t, ∂g/∂t] gives
first passage times for trajectories starting on
higher steps.
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Solutions: A Special Case
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Solutions: General Case

The general case is a little more difficult.

• Recall that

g
(

U(s, t)
)

=
1

γ
+ eγt

∫

∞

t

γe−γrg
(

(1 − p)U(s, r)
)

dr.
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Solutions: General Case

The general case is a little more difficult.

• Define a mapping K : H → H,

K
(

f(s, t)
)

:=
1

γ
+ eγt

∫

∞

t

γe−γrf ((1 − p)U(s, r)) dr,
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Solutions: General Case

The general case is a little more difficult.

• Define a mapping K : H → H,

K
(

f(s, t)
)

:=
1

γ
+ eγt

∫

∞

t

γe−γrf ((1 − p)U(s, r)) dr,

with H being the set of bounded functions
f : G → R+ under the condition

f
(

U(s, t)
)

≥
1

γ
+ eγt

∫

∞

t

γe−γrf ((1 − p)U(s, r)) dr.
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Solutions: General Case

• f ≥ K(f), f ∈ H, so we might hope that the
iterative application of K would lead to a fixed
point, but. . .
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Solutions: General Case

• f ≥ K(f), f ∈ H, so we might hope that the
iterative application of K would lead to a fixed
point, but. . .

• H 6= ∅ is equivalent to the existence of a
solution, h, to

(Lh)(U) ≤ −1,U ∈ G

h(U) ≥ 0,U /∈ G,

≡ to a condition from Gihman & Skorohod for
the existence of a solution τG ≤ h.
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Solutions: General Case

• Is H empty? No! Hanson & Tuckwell (1981)
analyse a similar 1D model for u(s, t).
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Solutions: General Case

• Is H empty? No! Hanson & Tuckwell (1981)
analyse a similar 1D model for u(s, t).

• In our 2D model, u does not depend on v, so:

(i) take G′ ⊃ G so that the first passage out of
G′ only depends on u;
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Solutions: General Case

• Is H empty? No! Hanson & Tuckwell (1981)
analyse a similar 1D model for u(s, t).

• In our 2D model, u does not depend on v, so:

(i) take G′ ⊃ G so that the first passage out of
G′ only depends on u;

(ii) find h(u) = τG′(u) (using H & T);
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Solutions: General Case

• Is H empty? No! Hanson & Tuckwell (1981)
analyse a similar 1D model for u(s, t).

• In our 2D model, u does not depend on v, so:

(i) take G′ ⊃ G so that the first passage out of
G′ only depends on u;

(ii) find h(u) = τG′(u) (using H & T);
(iii) then h(u) satisfies the inequality condition

for all v such that (u, v) ∈ S.
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