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Motivation

e Nodes A — F

* Connected by a set L of
physical links, each with
capacity ¢

* A route r IS a non-empty
subset of the physical
links, with Poisson arrival
rate )\, and mean connec-

E tion time !
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many paths through the network
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Motivation

* Routes require capacity to carry traffic

* There are situations where one physical link is used In
many paths through the network

* However, the physical links have capacity constraints

The natural question that arises is

How should capacity be allocated in a network between
competing streams of traffic?




Problem framework

* A physical network overlaid by a logically sufficiently
connected network

* When traffic arrives, we do not “check ahead” for spare
capacity

* Reserve capacity between each origin and destination
node (A — F)

* This allows us to decouple the network and treat each
route r as an Erlang loss system with capacity z,

* A continuous time Markov chain, where arrivals that
find the system at capacity are lost; they are not
gueued



Problem framework

* Allocating capacity across routes in the network requires
respect of capacity contraints

e Define a matrix A with elements

1 iflisinr
Ay = :
0 otherwise

* Assume each route r has an associated utility function
U.(x,) and we wish to maximise utility over the network;
eX. optimise quality of service over all routes



Problem framework

The optimisation formulation for the network as a whole is:

subject to

Ex. U,(x,) = X6, T (1 — E(pr,x,)) and E (p,, x,) gives the
blocking probability on route r.



Kelly’s approach

Kelly et al (1998) Rate control for communication networks:
shadow prices, proportional fairness and stability

* Different physical context, but similar mathematical
formulation (key difference: inequality constraint)

* Mathematically tractable problem, but there exist
centralisation issues

* Decomposition into a USER and NETWORK problem, that
are tied together using Lagrangian arguments

* Using these ideas, a rate control algorithm is constructed



Kelly’s approach

Kelly et al (1998) Rate control for communication networks:
shadow prices, proportional fairness and stability

* Different physical context, but similar mathematical
formulation (key difference: inequality constraint)

* Mathematically tractable problem, but there exist
centralisation issues

* Decomposition into a USER and NETWORK problem, that
are tied together using Lagrangian arguments

* Using these ideas, a rate control algorithm is constructed

Can we use a similar approach, but exploit our network
structure in the solution method?
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Buy/Sell heuristic

* Using the utility function, we can derive buy and sell
prices of a unit of capacity

* Assuming a route has capacity z,

Buy(z)=U(z+1) —U(x)

SELL(z) =U(x) —U(x —1).

Ex. The buy price using the previous example would take the

form Buy(z) = 0X\T (E (p,x) — E (p,x + 1))



Buy/Sell heuristic

* Direct routes are those
with origin and
destination nodes
connected by one
physical link only
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Buy/Sell heuristic

e Direct routes are those
A with origin and
destination nodes
connected by one

B physical link only

e Transit routes are those

C /% D which utilise more than
Q one physical link

* The proposed capacity
trading scheme operates
E locally, that is transit
F routes can only trade with
their constituent direct
routes



Buy/Sell heuristic

* Chiera and Taylor (2002) derived a capacity value
function to be used for this type of trading scheme

* Modelled each route as an M/M/C/C queue
* Chiera et al (2003) showed that this type of local

Interaction (between transit and direct routes) lowers
blocking probabilities of a network

* At this stage, the method is a heuristic — it is not clear
whether the global optimum can be reached

e Can we provide some theoretical support to this
heuristic?
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Global problem (revisited)

We can split the set of routes R into 7, the set of transit routes
and D, the set of direct routes.

max {Z U (x,) + Z Ul(ﬂfl)}

reT leD

subject to

> x = C VIeL

recTUD:ler




Reformulation

We can rewrite the global problem solely in terms of capacity
on the transit routes.

mxax{ Ur(zr) + > U, (cl - > :13) }

riler

Y x, < C Vel

8
Vv
=




Karush-Kuhn-Tucker conditions

A Karush-Kuhn-Tucker point in this case will be the global
optimum on the feasible region, with capacities = and
Lagrange multipliers A and » satisfying

(1) U(2r) = Xpaer UL (C1 = Xorier Tr) = Xpaer M+ 0y =0

(Z)Azzoandmz()

B) N (Cr =, e, 2r) = 0and nyz, = 0 (C-S)




Karush-Kuhn-Tucker conditions

* Assume first that z; > 0 and z,, > 0 for all routes in the
network

* The KKT conditions specify, the optimal allocation
satisfies

U () = Zz;l@ Uz/ (Cl - Zr:ler 5'77“)

* This Is equivalent to a trading scheme where
“Infinitesimal” chunks of capacity can be traded

* Encouragement that the buy/sell heuristic was on the
right track



Dynamics of capacity

Let the dynamics of transit route capacity be described by the
system below

d;"“ (U’ re) — Yy _Ul(C) - sz)—Z)\ﬂrm)

ler s:l€s ler

* The fixed point of this system is equivalent to the KKT
point



Dynamics of capacity

Let the dynamics of transit route capacity be described by the
system below

d;"“ (U’ re) — Yy _Ul(C) - sz)—Z)\ﬂrm)

ler s:l€s ler

* The fixed point of this system is equivalent to the KKT
point

* What are the parameters \; and », ?



Continuous scheme

* Applying the [; penalty method to our optimisation
problem helps solve this problem

lim k() xzs—C)T =X

k— 00
s:l€s

lim k(—xz,)" =n

k— 00

* From a practical perspective, we cannot set k — .
Instead, we choose a large value K



Continuous scheme

* The fixed point of the system is exactly the optimal
solution, when the solution is In the strict interior of the
feasible region

* When the solution is on the boundary, setting K to be
very large, arbitrarily closely approximates the optimal
solution



Continuous scheme

* The fixed point of the system is exactly the optimal
solution, when the solution is In the strict interior of the
feasible region

* When the solution is on the boundary, setting K to be
very large, arbitrarily closely approximates the optimal
solution

* The fixed point is attracting — this is established using
Lyapunov arguments
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Network example

We consider a network with
e /4 direct routes

Py * 6 transit routes; it is

BN logically fully

BRE connected

O O O * Each route has a util-

------ L e ity function dependent

: on parameters J\,, the

: arrival rate and 4,,
the revenue generated
from each accepted ar-
rival, and is a function
of capacity




Network example

The results using the continuous trading scheme are shown
below

Dynamics of transit route capacity = Capacity exhausted by transit routes
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Network example

If the optimal solution is a boundary solution, the results (K =
100) are shown below

Dynamics of transit route capacity = Capacity exhausted by transit routes
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Discretised system

* Assume that trades can only occur in amounts of A units
at a time

* As described in the buy/sell heuristic, a trade occurs if
one of the following conditions is satisfied:



Discretised system

* Assume that trades can only occur in amounts of A units
at a time

* As described in the buy/sell heuristic, a trade occurs if
one of the following conditions is satisfied:

Buy(z,) > Z Sell(C; — Z Ts)
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= T, =2, + A



Discretised system

* Assume that trades can only occur in amounts of A units
at a time

* As described in the buy/sell heuristic, a trade occurs if
one of the following conditions is satisfied:

> Buy(Cp— Y ws) > Sell(zy)

ler s:l€s

= T, =2, — A



Discretised system

* Assume that trades can only occur in amounts of A units
at a time

* As described in the buy/sell heuristic, a trade occurs if
one of the following conditions is satisfied:

¢ |f neither condition iIs satisfied, no trade occurs.



Discretised system

* |f a route has close to zero (or < A) allocated capacity
and the conditions state the route must relinquish
capacity, the trade occurs

* However this yields an allocation that is not feasible



Discretised system

* |f a route has close to zero (or < A) allocated capacity
and the conditions state the route must relinquish
capacity, the trade occurs

* However this yields an allocation that is not feasible

* The next time prices are calculated, they will involve a
penalty term, taking the same form as in the dynamical
system.

* The relinquishing route will be able to acquire capacity at
the next trade.



Network example

Allowing transit routes to instigate trading in a random order,

Dynamics of transit routes Dynamics of direct routes

)
=)
A
3]

241 4
2.2 35
2 2f 2 8r
) [3)
© ©
g g
O 1.8fF o 251
1.6} 2F
1.4 15
1.2 1 Il
1 1 1 1 1 1 1 1 Il
0 20 40 60 80 100 20 40 60 80 100

time time



Network example

However, the system can also evolve to

Dynamics of transit routes Dynamics of direct routes
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Network example

Oscillatory behaviour arises when a solution is on the
boundary of the feasible region

Dynamics of transit routes Dynamics of direct routes
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Network example

Introduce a threshold ¢ by which buy prices have to exceed
sell prices before a trade occurs

Dynamics of transit routes Dynamics of direct routes
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Future work

* Can A be chosen so that the number of stable equilibria
In the discrete system reduces to one? Analyse as the
number of absorbing states in a finite-state Markov chain

* How “far” from the optimal can we say an equilibrium
solution is, given multiple stable equilibria?

* How can ¢ be chosen using local information, and how
much does it affect optimality?



Future work

* Can A be chosen so that the number of stable equilibria
In the discrete system reduces to one? Analyse as the
number of absorbing states in a finite-state Markov chain

* How “far” from the optimal can we say an equilibrium
solution is, given multiple stable equilibria?

* How can ¢ be chosen using local information, and how
much does it affect optimality?

* Model situation where occupancy on each route r Is
fluctuating stochastically through modified utility function

* Performance analysis of schemes
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