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Motivation

• Routes require capacity to carry traffic
• There are situations where one physical link is used in

many paths through the network
• However, the physical links have capacity constraints

The natural question that arises is

How should capacity be allocated in a network between
competing streams of traffic?



Problem framework

• A physical network overlaid by a logically sufficiently
connected network

• When traffic arrives, we do not “check ahead” for spare
capacity

• Reserve capacity between each origin and destination
node (A → F )

• This allows us to decouple the network and treat each
route r as an Erlang loss system with capacity xr

• A continuous time Markov chain, where arrivals that
find the system at capacity are lost; they are not
queued



Problem framework

• Allocating capacity across routes in the network requires
respect of capacity contraints

• Define a matrix A with elements

Alr =

{

1 if l is in r

0 otherwise

• Assume each route r has an associated utility function
Ur(xr) and we wish to maximise utility over the network;
ex. optimise quality of service over all routes



Problem framework

The optimisation formulation for the network as a whole is:

max
xr

∑

r∈R

Ur (xr)

subject to

Ax = C

x ≥ 0.

Ex. Ur(xr) = λrθrT (1 − E (ρr, xr)) and E (ρr, xr) gives the
blocking probability on route r.



Kelly’s approach

Kelly et al (1998) Rate control for communication networks:
shadow prices, proportional fairness and stability

• Different physical context, but similar mathematical
formulation (key difference: inequality constraint)

• Mathematically tractable problem, but there exist
centralisation issues

• Decomposition into a USER and NETWORK problem, that
are tied together using Lagrangian arguments

• Using these ideas, a rate control algorithm is constructed



Kelly’s approach

Kelly et al (1998) Rate control for communication networks:
shadow prices, proportional fairness and stability

• Different physical context, but similar mathematical
formulation (key difference: inequality constraint)

• Mathematically tractable problem, but there exist
centralisation issues

• Decomposition into a USER and NETWORK problem, that
are tied together using Lagrangian arguments

• Using these ideas, a rate control algorithm is constructed

Can we use a similar approach, but exploit our network
structure in the solution method?
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Buy/Sell heuristic

• Using the utility function, we can derive buy and sell
prices of a unit of capacity

• Assuming a route has capacity x,

BUY(x) = U(x + 1) − U(x)

SELL(x) = U(x) − U(x − 1).

Ex. The buy price using the previous example would take the

form BUY(x) = θλT (E (ρ, x) − E (ρ, x + 1))
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with origin and
destination nodes
connected by one
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• Transit routes are those
which utilise more than
one physical link

• The proposed capacity
trading scheme operates
locally, that is transit
routes can only trade with
their constituent direct
routes
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Buy/Sell heuristic

• Chiera and Taylor (2002) derived a capacity value
function to be used for this type of trading scheme
• Modelled each route as an M/M/C/C queue

• Chiera et al (2003) showed that this type of local
interaction (between transit and direct routes) lowers
blocking probabilities of a network

• At this stage, the method is a heuristic – it is not clear
whether the global optimum can be reached

• Can we provide some theoretical support to this
heuristic?
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Global problem (revisited)

We can split the set of routes R into T , the set of transit routes
and D, the set of direct routes.

max
x

{

∑

r∈T

Ur(xr) +
∑

l∈D

Ul(xl)

}

subject to

∑

r∈T ∪D:l∈r

xr = Cl ∀l ∈ L

x ≥ 0.



Reformulation

We can rewrite the global problem solely in terms of capacity
on the transit routes.

max
x

{

∑

r∈T

Ur(xr) +
∑

l∈D

Ul

(

Cl −
∑

r:l∈r

xr

)}

subject to

∑

r∈T :l∈r

xr ≤ Cl ∀l ∈ L

x ≥ 0.



Karush-Kuhn-Tucker conditions

A Karush-Kuhn-Tucker point in this case will be the global
optimum on the feasible region, with capacities x and
Lagrange multipliers λ and η satisfying

(1) U ′
r(xr) −

∑

l:l∈r
U ′

l

(

Cl −
∑

r:l∈r
xr

)

−
∑

l:l∈r
λl + ηr = 0

(2) λl ≥ 0 and ηr ≥ 0

(3) λl

(

Cl −
∑

r:l∈r
xr

)

= 0 and ηrxr = 0 (C-S)



Karush-Kuhn-Tucker conditions

• Assume first that xl > 0 and xr > 0 for all routes in the
network

• The KKT conditions specify, the optimal allocation
satisfies
U ′

r(xr) =
∑

l:l∈r
U ′

l

(

Cl −
∑

r:l∈r
xr

)

• This is equivalent to a trading scheme where
“infinitesimal” chunks of capacity can be traded

• Encouragement that the buy/sell heuristic was on the
right track



Dynamics of capacity

Let the dynamics of transit route capacity be described by the
system below

dxr

dt
= κ

(

U ′
r(xr) −

∑

l∈r

U ′
l (Cl −

∑

s:l∈s

xs) −
∑

l∈r

λl + ηr

)

• The fixed point of this system is equivalent to the KKT
point



Dynamics of capacity

Let the dynamics of transit route capacity be described by the
system below

dxr

dt
= κ

(

U ′
r(xr) −

∑

l∈r

U ′
l (Cl −

∑

s:l∈s

xs) −
∑

l∈r

λl + ηr

)

• The fixed point of this system is equivalent to the KKT
point

• What are the parameters λl and ηr ?



Continuous scheme

• Applying the l2 penalty method to our optimisation
problem helps solve this problem

lim
k→∞

k(
∑

s:l∈s

xs − Cl)
+ = λ∗

l

lim
k→∞

k(−xr)
+ = η∗r

• From a practical perspective, we cannot set k → ∞.
Instead, we choose a large value K



Continuous scheme

• The fixed point of the system is exactly the optimal
solution, when the solution is in the strict interior of the
feasible region

• When the solution is on the boundary, setting K to be
very large, arbitrarily closely approximates the optimal
solution



Continuous scheme

• The fixed point of the system is exactly the optimal
solution, when the solution is in the strict interior of the
feasible region

• When the solution is on the boundary, setting K to be
very large, arbitrarily closely approximates the optimal
solution

• The fixed point is attracting – this is established using
Lyapunov arguments



Network example

We consider a network with
• 4 direct routes

• 6 transit routes; it is
logically fully
connected

• Each route has a util-
ity function dependent
on parameters λr, the
arrival rate and θr,
the revenue generated
from each accepted ar-
rival, and is a function
of capacity
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Network example

The results using the continuous trading scheme are shown
below
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Network example

If the optimal solution is a boundary solution, the results (K =
100) are shown below
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at a time

• As described in the buy/sell heuristic, a trade occurs if
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Discretised system

• Assume that trades can only occur in amounts of ∆ units
at a time

• As described in the buy/sell heuristic, a trade occurs if
one of the following conditions is satisfied:

∑

l∈r

Buy(Cl −
∑

s:l∈s

xs) > Sell(xr)

⇒ xr := xr − ∆



Discretised system

• Assume that trades can only occur in amounts of ∆ units
at a time

• As described in the buy/sell heuristic, a trade occurs if
one of the following conditions is satisfied:

• If neither condition is satisfied, no trade occurs.



Discretised system

• If a route has close to zero (or < ∆) allocated capacity
and the conditions state the route must relinquish
capacity, the trade occurs

• However this yields an allocation that is not feasible



Discretised system

• If a route has close to zero (or < ∆) allocated capacity
and the conditions state the route must relinquish
capacity, the trade occurs

• However this yields an allocation that is not feasible

• The next time prices are calculated, they will involve a
penalty term, taking the same form as in the dynamical
system.

• The relinquishing route will be able to acquire capacity at
the next trade.



Network example

Allowing transit routes to instigate trading in a random order,
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Network example

However, the system can also evolve to
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Network example

Oscillatory behaviour arises when a solution is on the
boundary of the feasible region
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Network example

Introduce a threshold ε by which buy prices have to exceed
sell prices before a trade occurs

50 100 150

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Dynamics of transit routes

ca
pa

ci
ty

time
20 40 60 80 100 120 140

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Dynamics of direct routes

ca
pa

ci
ty

time



1. Motivation

2. Problem framework

3. Kelly’s capacity allocation method

4. Buy/Sell heuristic

5. Continuous re-allocation scheme

6. Discretised re-allocation scheme

7. Work in progress



Future work

• Can ∆ be chosen so that the number of stable equilibria
in the discrete system reduces to one? Analyse as the
number of absorbing states in a finite-state Markov chain

• How “far” from the optimal can we say an equilibrium
solution is, given multiple stable equilibria?

• How can ε be chosen using local information, and how
much does it affect optimality?



Future work

• Can ∆ be chosen so that the number of stable equilibria
in the discrete system reduces to one? Analyse as the
number of absorbing states in a finite-state Markov chain

• How “far” from the optimal can we say an equilibrium
solution is, given multiple stable equilibria?

• How can ε be chosen using local information, and how
much does it affect optimality?

• Model situation where occupancy on each route r is
fluctuating stochastically through modified utility function

• Performance analysis of schemes
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