Quasi-Birth-and-Death Processes with an Infinite Phase Space

Allan Motyer

University of Melbourne

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

What is a QBD?

- A continuous-time QBD process is a 2-dimensional Markov Chain $\left\{\left(Y_{t}, J_{t}\right), t \geq 0\right\}$ on the state space $\{0,1, \ldots\} \times\{0,1, \ldots, m\}$.

What is a QBD?

- A continuous-time QBD process is a 2-dimensional Markov Chain $\left\{\left(Y_{t}, J_{t}\right), t \geq 0\right\}$ on the state space $\{0,1, \ldots\} \times\{0,1, \ldots, m\}$.
- Y_{t} is called the level of the process at time t.

What is a QBD?

- A continuous-time QBD process is a 2-dimensional Markov Chain $\left\{\left(Y_{t}, J_{t}\right), t \geq 0\right\}$ on the state space $\{0,1, \ldots\} \times\{0,1, \ldots, m\}$.
- Y_{t} is called the level of the process at time t.
- J_{t} is called the phase of the process at time t.

What is a QBD?

- A continuous-time QBD process is a 2-dimensional Markov Chain $\left\{\left(Y_{t}, J_{t}\right), t \geq 0\right\}$ on the state space $\{0,1, \ldots\} \times\{0,1, \ldots, m\}$.
- Y_{t} is called the level of the process at time t.
- J_{t} is called the phase of the process at time t.
- The parameter m may be either finite or infinite.

What is a QBD?

- A continuous-time QBD process is a 2-dimensional Markov Chain $\left\{\left(Y_{t}, J_{t}\right), t \geq 0\right\}$ on the state space $\{0,1, \ldots\} \times\{0,1, \ldots, m\}$.
- Y_{t} is called the level of the process at time t.
- J_{t} is called the phase of the process at time t.
- The parameter m may be either finite or infinite.
- State transitions are restricted to states in the same level or in the two adjacent levels (hence the name QBD).

What is a QBD?

- A continuous-time QBD process is a 2-dimensional Markov Chain $\left\{\left(Y_{t}, J_{t}\right), t \geq 0\right\}$ on the state space $\{0,1, \ldots\} \times\{0,1, \ldots, m\}$.
- Y_{t} is called the level of the process at time t.
- J_{t} is called the phase of the process at time t.
- The parameter m may be either finite or infinite.
- State transitions are restricted to states in the same level or in the two adjacent levels (hence the name QBD).
- Transition intensities are assumed to be level-independent.
- A QBD process has a generator Q with block tri-diagonal structure

$$
Q=\left(\begin{array}{cccccc}
\tilde{Q}_{1} & Q_{0} & & & & \\
Q_{2} & Q_{1} & Q_{0} & & & \\
& Q_{2} & Q_{1} & Q_{0} & & \\
& & Q_{2} & Q_{1} & Q_{0} & \\
& & & \ddots & \ddots & \ddots
\end{array}\right) .
$$

- Q_{0}, Q_{1}, Q_{2}, and \tilde{Q}_{1} are $(m+1) \times(m+1)$ matrices.

Why study QBDs?

- They represent a wide class of stochastic models.

Why study QBDs?

- They represent a wide class of stochastic models.
- Simple example: Tandem Jackson network

Why study QBDs?

- They represent a wide class of stochastic models.
- Simple example: Tandem Jackson network

Why study QBDs?

- They represent a wide class of stochastic models.
- Simple example: Tandem Jackson network

- Let J_{t} denote the number of customers in the first queue at time t (the phase).

Why study QBDs?

- They represent a wide class of stochastic models.
- Simple example: Tandem Jackson network

- Let J_{t} denote the number of customers in the first queue at time t (the phase).
- Let Y_{t} denote the number of customers in the second queue at time t (the level).

Why study QBDs?

- They represent a wide class of stochastic models.
- Simple example: Tandem Jackson network

- Let J_{t} denote the number of customers in the first queue at time t (the phase).
- Let Y_{t} denote the number of customers in the second queue at time t (the level).
- First queue has capacity m (may be finite or infinite).

Example: Tandem network

Transition intensities for the tandem network

Example: Tandem network

Recall that the generator Q has a block tri-diagonal structure

$$
Q=\left(\begin{array}{cccccc}
\tilde{Q}_{1} & Q_{0} & & & & \\
Q_{2} & Q_{1} & Q_{0} & & & \\
& Q_{2} & Q_{1} & Q_{0} & & \\
& & Q_{2} & Q_{1} & Q_{0} & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

Example: Tandem network

For the tandem network with infinte buffer size m, the blocks in the generator Q are given by the infinite-dimensional matrices

$$
\begin{gathered}
Q_{0}=\left(\begin{array}{cccc}
0 & \ldots & & \\
\mu_{1} & 0 & \ldots & \\
& \mu_{1} & 0 & \ldots \\
& & \ddots & \ddots
\end{array}\right), \quad Q_{2}=\left(\begin{array}{cccc}
\mu_{2} & & & \\
& \mu_{2} & & \\
& & \mu_{2} & \\
& & & \ddots
\end{array}\right), \\
Q_{1}=\left(\begin{array}{ccccc}
-\left(\lambda+\mu_{2}\right) & \lambda & & & \\
& -\left(\lambda+\mu_{1}+\mu_{2}\right) & \lambda & \\
& & -\left(\lambda+\mu_{1}+\mu_{2}\right) & \lambda & \\
& & \ddots & \ddots
\end{array}\right.
\end{gathered}
$$

Example: Tandem network

and

$$
\tilde{Q}_{1}=\left(\begin{array}{ccccc}
-\lambda & \lambda & & & \\
& -\left(\lambda+\mu_{1}\right) & \lambda & & \\
& & -\left(\lambda+\mu_{1}\right) & \lambda & \\
& & & \ddots & \ddots
\end{array}\right)
$$

The Matrix-Geometric Property

- Denote the limiting probabilities

$$
\pi_{k j}:=\lim _{t \rightarrow \infty} \mathbb{P}\left(Y_{t}=k, J_{t}=j\right)
$$

The Matrix-Geometric Property

- Denote the limiting probabilities

$$
\pi_{k j}:=\lim _{t \rightarrow \infty} \mathbb{P}\left(Y_{t}=k, J_{t}=j\right)
$$

- Define

$$
\boldsymbol{\pi}_{k}=\left(\pi_{k 0}, \pi_{k 1}, \ldots, \pi_{k m}\right), \text { for } k=0,1, \ldots
$$

and

$$
\boldsymbol{\pi}=\left(\boldsymbol{\pi}_{0}, \boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}, \ldots\right)
$$

The Matrix-Geometric Property

- Denote the limiting probabilities

$$
\pi_{k j}:=\lim _{t \rightarrow \infty} \mathbb{P}\left(Y_{t}=k, J_{t}=j\right)
$$

- Define

$$
\boldsymbol{\pi}_{k}=\left(\pi_{k 0}, \pi_{k 1}, \ldots, \pi_{k m}\right), \text { for } k=0,1, \ldots
$$

and

$$
\boldsymbol{\pi}=\left(\boldsymbol{\pi}_{0}, \boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}, \ldots\right)
$$

- Then

$$
\boldsymbol{\pi}_{k}=\boldsymbol{\pi}_{0} R^{k}, \quad k \geq 0
$$

(assuming that the QBD is ergodic).

Neuts' R matrix

- The matrix R has dimensions $(m+1) \times(m+1)$, and is the minimal non-negative solution to the equation

$$
Q_{0}+R Q_{1}+R^{2} Q_{2}=0
$$

- Probabilistic interpretation of R

Let μ_{i} be the mean sojourn time in state (k, i) for $k \geq 1$ (this is independent of k).

Then, $R_{i j}$ is μ_{i} times the total expected time spent in state $(k+1, j)$ before first return to level k, starting from state (k, i).

The Caudal Characteristic

- For $m<\infty$ (finite phase space) the marginal stationary probability that the QBD is in level k decays geometrically with rate $\operatorname{sp}(R)<1$, where $\operatorname{sp}(R)$ is the spectral radius of the matrix R.

$$
\operatorname{sp}(R):=\max _{i}\left|\lambda_{i}\right|
$$

where $\lambda_{i} \mathrm{~s}$ are the eigenvalues of R.

- That is,

$$
\lim _{k \rightarrow \infty} \frac{\sum_{i} \pi_{k i}}{(\operatorname{sp}(R))^{k}}=\kappa
$$

where κ is a constant.

The Perron-Frobenius Eigenvalue

- For a finite-dimensional, square, irreducible, non-negative matrix A, there exists a strictly positive eigenvalue which is simple and is greater than or equal to the modulus of all the other eigenvalues.
- This eigenvalue is called the Perron-Frobenius eigenvalue of A, and is equal to the spectral radius of A.
- For the case of a finite number of phases $(m<\infty)$ the caudal characteristic (decay rate) is given by the Perron-Frobenius eigenvalue.

Infinite-dimensional analogue

- When m is infinite, things get more complicated.
- The infinite-dimensional analogue of the Perron-Frobenius eigenvalue is the convergence norm.
- The common convergence radius $\alpha, 0 \leq \alpha<\infty$, of the power series

$$
\sum_{k=0}^{\infty} A^{k}(i, j) z^{k}
$$

is called the convergence parameter of the matrix A.

- The quantity $1 / \alpha$ is called the convergence norm of A, and satisfies

$$
1 / \alpha=\lim _{k \rightarrow \infty}\left(A^{k}(i, j)\right)^{1 / k}
$$

independently of i and j.

- Kroese, Scheinhardt, and Taylor (2003) considered the two-node tandem Jackson network with an infinite waiting room at the first queue (an infinite phase space).

- It was found that the decay rate of the stationary distribution of the "level" process is not necessarily equal to the convergence norm of the R matrix.
- This decay rate can be made to take any value from a range of admissable values, by controlling the transition structure only at level zero (i.e. by modifying the \tilde{Q}_{1} matrix).
- The limiting behaviour of the tandem queue with a finite waiting room at the first queue, as the waiting room is increased to infinity, was considered.
- The eigenvalues of the R matrix converge to a continuum.
- The limiting value of the decay rate in the finite waiting room case is not necessarily the same as the decay rate in the infinite waiting room case.

Summary

- A QBD process is a two-dimensional Markov chain with a block-tridiagonal generator.
- Matrix-Geometric Property

$$
\boldsymbol{\pi}_{k}=\boldsymbol{\pi}_{0} R^{k}, \quad k \geq 0
$$

- For a QBD with a finite number of phases

$$
\lim _{k \rightarrow \infty} \frac{\sum_{i} \pi_{k i}}{(\operatorname{sp}(R))^{k}}=\kappa
$$

Summary

- Kroese, Scheinhardt, and Taylor (2003) found that more complicated behaviour occurs for a special case of a QBD with an infinite phase space.
- My research (to be done) will seek to generalise the results for QBDs with an infinite phase space.

