ON BIRTH-DEATH PROCESSES AND EXTREME ZEROS OF ORTHOGONAL POLYNOMIALS

Erik A. van Doorn
Department of Applied Mathematics
University of Twente
Enschede, The Netherlands

Stochastics and Special Functions
Brisbane, 22 May 2009
1. orthogonal polynomials
 - definitions, notation
 - zeros, orthogonalizing measure
 - OP’s on $[0, \infty)$

2. birth-death processes (with killing)
 - definitions, notation
 - decay rate
 - recent results

3. extreme zeros of OP’s
orthogonal polynomials

definition: \(\{P_n(x), \ n = 0, 1, \ldots\} \) (monic, \(\deg(P_n) = n \)) is orthogonal polynomial sequence (OPS) if there exists (Borel) measure \(\psi \) (of total mass 1) such that

\[
\int_{-\infty}^{\infty} P_n(x)P_m(x)\psi(dx) = k_n\delta_{nm}
\]

with \(k_n > 0 \) (\(\psi \) is not necessarily unique)

Favard’s theorem:

\(\{P_n(x), \ n = 0, 1, \ldots\} \) is OPS \iff there exist \(c_n \in \mathbb{R}, \ \lambda_n > 0 \) such that

\[
P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_nP_{n-2}(x)
P_0(x) = 1, \ P_1(x) = x - c_1
\]
orthogonal polynomials

point of departure: \(\{P_n(x), \ n = 0, 1, \ldots \} \) satisfies

\[
P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)
\]

\[
P_0(x) = 1, \quad P_1(x) = x - c_1
\]

with \(c_n \in \mathbb{R}, \ \lambda_n > 0 \)

general problem: find information on orthogonalizing measure from coefficients in recurrence relation (cf. Chihara's book)

fact: support of orthogonalizing measure is related to zeros of polynomials

approach: find information on zeros of \(P_n(x) \) from coefficients in recurrence relation
zeros of orthogonal polynomials

\{P_n(x), \ n = 0, 1, \ldots\} satisfies

\[P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x) \]

\[P_0(x) = 1, \quad P_1(x) = x - c_1 \]

if \(a_j > 0 \) and

\[T_n := \begin{pmatrix}
 c_1 & \lambda_2/a_2 & 0 & \cdots & \cdots \\
 a_2 & c_2 & \lambda_3/a_3 & \cdots & \cdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \vdots & \vdots & \cdots & c_{n-1} & \lambda_n/a_n \\
 \vdots & \vdots & \cdots & 0 & a_n & c_n
\end{pmatrix} \]

then

\[\det(xI_n - T_n) = P_n(x) \]

observation: zeros of \(P_n(x) \) are eigenvalues of \(T_n \)
zeros of orthogonal polynomials

\{P_n(x), \ n = 0, 1, \ldots\} is OPS with zeros \(x_{ni}\)

zeros of \(P_n(x)\) real and distinct:

\[x_{n1} < x_{n2} < \ldots < x_{nn}\]

interlacing property:

\[x_{n+1,i} < x_{ni} < x_{n+1,i+1}\]

hence

\[\xi_i := \lim_{n \to \infty} x_{ni}\] and \[\sigma := \lim_{i \to \infty} \xi_i\]

exist, and

\[-\infty \leq \xi_i \leq \xi_{i+1} \leq \sigma \leq \infty\]
zeros of orthogonal polynomials

\{P_n(x), \ n = 0, 1, \ldots\} \text{ is OPS with zeros } x_{ni}

let

\[\xi_i := \lim_{n \to \infty} x_{ni} \quad \text{and} \quad \sigma := \lim_{i \to \infty} \xi_i \]

then

\[-\infty \leq \xi_i \leq \xi_{i+1} \leq \sigma \leq \infty \]

moreover

\[\xi_i = \xi_{i+1} \Rightarrow \xi_i = \sigma \]

similarly

\[\eta_i := \lim_{n \to \infty} x_{n,n-i+1} \quad \text{etc} \]
zeros of orthogonal polynomials

\(\{ P_n(x), \ n = 0, 1, \ldots \} \) is OPS with zeros \(x_{ni} \) and \(\xi_i := \lim_{n \to \infty} x_{ni} \)

then

\[-\infty \leq \xi_i \leq \xi_{i+1} \leq \sigma = \lim_{i \to \infty} \xi_i \leq \infty\]

and

\[\xi_i = \xi_{i+1} \Rightarrow \xi_i = \sigma\]

if \(\xi_1 > -\infty \) there are three possibilities:

1. \(\xi_1 < \cdots < \xi_i < \xi_{i+1} < \cdots < \sigma = \infty \)
2. \(\xi_1 < \cdots < \xi_i < \xi_{i+1} < \cdots < \sigma < \infty \)
3. \(\xi_1 < \cdots < \xi_i = \xi_{i+k} \) for some \(i \) and all \(k > 0 \)
orthogonalizing measure

\(\{P_n(x), \ n = 0, 1, \ldots \} \) is OPS satisfying

\[
P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)
\]

\[
P_0(x) = 1, \quad P_1(x) = x - c_1
\]

Theorem: if \(\xi_1 > -\infty \) there exists an orthogonalizing measure \(\psi \) for \(\{P_n(x)\} \), that is,

\[
\int_{-\infty}^{\infty} P_m(x)P_n(x)\psi(dx) = k_n\delta_{mn}
\]

such that

\[
\sigma = \infty \Rightarrow \text{supp}(\psi) = \{\xi_1, \xi_2, \ldots\}
\]

\[
\sigma < \infty \Rightarrow \text{supp}(\psi) \cap (-\infty, \sigma] = \overline{\{\xi_1, \xi_2, \ldots\}}
\]

Remark: \(\psi \) not necessarily unique (Hamburger moment problem)
orthogonalizing measure

\[\{P_n(x), \ n = 0, 1, \ldots \} \text{ is OPS satisfying} \]
\[
P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x) \\
P_0(x) = 1, \ P_1(x) = x - c_1
\]

general problem: find information on orthogonalizing measure from coefficients in recurrence relation

specific problem: find information on \(\xi_1 \) (and \(x_{n1} \), and \(\xi_2 \)) in terms of coefficients in recurrence relation

observe: \(\{\tilde{P}_n(x) := (-1)^n P_n(-x), \ n = 0, 1, \ldots \} \) is OPS with \(\tilde{c}_n := -c_n \) and \(\tilde{\lambda}_n := \lambda_n \), hence
\[
x_{nn} = -\tilde{x}_{n1}
\]
zeros of orthogonal polynomials

\{P_n(x), \ n = 0, 1, \ldots \} is OPS satisfying

\[P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x) \]

\[P_0(x) = 1, \quad P_1(x) = x - c_1 \]

with \(c_n \in \mathbb{R}, \ \lambda_n > 0 \)

\textbf{recall:} zeros of \(P_n(x) \) are eigenvalues of

\[T_n = \begin{pmatrix}
 c_1 & \lambda_2/a_2 & 0 & \cdots & \cdots \\
 a_2 & c_2 & \lambda_3/a_3 & \cdots & \cdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \cdots & \cdots & \cdots & c_{n-1} & \lambda_n/a_n \\
 \cdots & \cdots & \cdots & 0 & a_n & c_n
\end{pmatrix} \]

where \(a_j > 0 \)
zeros of orthogonal polynomials

Theorem (Gilewicz & Leopold (1985), vD (1984,1987)):

\[
x_{n1} = \max_{a > 0} \min_{1 \leq i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}
\]

\[
\xi_1 = \max_{a > 0} \inf_{i \geq 1} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}
\]

where \(\lambda_1 = 0 \), \(a = (a_1, a_2, \ldots) \)

Proof: *Geršgorin discs*
zeros of orthogonal polynomials

Theorem (vD (1987), Ismail & Li (1992):

\[x_{n1} = \max_h \min_{1 \leq i < n} \frac{1}{2} \left\{ c_i + c_{i+1} - \sqrt{(c_{i+1} - c_i)^2 + \frac{4\lambda_{i+1}}{(1 - h_i)h_{i+1}}} \right\} \]

where \(h = (h_1, \ldots, h_n) \), \(h_1 = 0 \), \(h_n = 1 \), \(0 < h_i < 1 \) (1 < i < n)

\[\xi_1 = \max_b \inf_{i \geq 1} \frac{1}{2} \left\{ c_i + c_{i+1} - \sqrt{(c_{i+1} - c_i)^2 + 4\lambda_{i+1}/b_i} \right\} \]

where \(b = (b_1, b_2, \ldots) \) is a chain sequence

Proof: ovals of Cassini
zeros of orthogonal polynomials

Theorem (vD (1987), Levenshtein (1995)):

\[
x_{n1} = \min_{h \geq 0} \left\{ \sum_{i=1}^{n} \left(h_i^2 c_i - 2 h_{i-1} h_i \sqrt{\lambda_{i+1}} \right) \right\}
\]

where \(h = (h_0, \ldots, h_n) \), \(h_0 = 0 \), \(\sum_{i=1}^{n} h_i^2 = 1 \)

\[
\xi_1 = \inf_{h \geq 0} \left\{ \lim_{n \to \infty} \inf \left\{ \sum_{i=1}^{n} \left(h_i^2 c_i - 2 h_{i-1} h_i \sqrt{\lambda_{i+1}} \right) \right\} \right\}
\]

where \(h = (h_0, h_1, \ldots) \), \(h_0 = 0 \), \(\sum_{i=1}^{\infty} h_i^2 = 1 \)

Proof: Courant-Fischer theorem/Raleigh quotients/field of values (symmetrize \(T_n \) by suitable similarity transformation)
orthogonal polynomials on \([0, \infty)\)

Theorem: the following are equivalent:

(i) \(\xi_1 \geq 0\)

(ii) there exist numbers \(\alpha_n > 0\) and \(\beta_{n+1} > 0\) such that \(c_1 = \alpha_1\), and, for \(n > 1\),

\[
\begin{align*}
 c_n &= \alpha_n + \beta_n \\
 \lambda_n &= \alpha_{n-1}\beta_n
\end{align*}
\]

(iii) there exist numbers \(\alpha_n > 0\), \(\beta_{n+1} > 0\) and \(\gamma_n \geq 0\) such that \(c_1 = \alpha_1 + \gamma_1\), and, for \(n > 1\),

\[
\begin{align*}
 c_n &= \alpha_n + \beta_n + \gamma_n \\
 \lambda_n &= \alpha_{n-1}\beta_n
\end{align*}
\]
orthogonal polynomials on \([0, \infty)\)

\[\xi_1 \geq 0 \iff \text{there exist numbers } \alpha_n > 0 \text{ and } \beta_{n+1} > 0 \text{ such that } c_1 = \alpha_1 \text{ and, for } n > 1, \]

\[c_n = \alpha_n + \beta_n, \quad \lambda_n = \alpha_{n-1}\beta_n \]

\[\iff \text{there exist numbers } \alpha_n > 0, \beta_{n+1} > 0 \text{ and } \gamma_n \geq 0 \text{ such that } c_1 = \alpha_1 + \gamma_1 \text{ and, for } n > 1, \]

\[c_n = \alpha_n + \beta_n + \gamma_n, \quad \lambda_n = \alpha_{n-1}\beta_n \]

assuming \(\psi\) is unique:

if \(\gamma_n > 0\) for some \(n\) then \(\psi(\{0\}) = 0\) and

\[\int_{(0,\infty)} x^{-1} \psi(dx) < \infty \]

if \(\gamma_n \equiv 0\) then

\[\psi(\{0\}) = \left\{\sum_{n} \frac{\alpha_1 \cdots \alpha_n}{\beta_2 \cdots \beta_{n+1}}\right\}^{-1} \geq 0 \]
summary OPS on $[0, \infty)$

$\{P_n(x), \ n = 0, 1, \ldots\}$ satisfies

$$P_n(x) = (x - \alpha_n - \beta_n - \gamma_n)P_{n-1}(x) - \alpha_{n-1}\beta_n P_{n-2}(x)$$

$P_0(x) = 1, \ P_1(x) = x - \alpha_1 - \gamma_1$

with $\alpha_n > 0, \beta_{n+1} > 0$ and $\gamma_n \geq 0$

\implies

$\{P_n(x), \ n = 0, 1, \ldots\}$ is OPS with respect to measure ψ with support in $[0, \infty)$ and

$$\xi_1 = \lim_{n \to \infty} x_{n1} = \inf \supp(\psi)$$

$$\xi_i = \lim_{n \to \infty} x_{ni} = \inf \left\{ \supp(\psi) \setminus \bigcup_{j<i} \xi_j \right\}$$

$$\sigma = \lim_{i \to \infty} \xi_i = \inf \supp(\psi)$$
birth-death process with killing

definition: *birth-death process with killing* is Markov process \(\{X(t), t \geq 0\} \) on \(\{0, 1, \ldots\} \) with coffin state 0, *birth rate* \(\alpha_n > 0 \) and *killing rate* \(\gamma_n \geq 0 \) in state \(n \geq 1 \), and *death rate* \(\beta_n > 0 \) in state \(n > 1 \).

representation for \(i, j > 0 \):

\[
p_{ij}(t) := \Pr\{X(t) = j \mid X(0) = i\} = \pi_j \int_0^\infty e^{-xt} Q_i(x) Q_j(x) \psi(dx)
\]

with

\[
\pi_1 := 1, \quad \pi_n := \frac{\alpha_1 \cdots \alpha_{n-1}}{\beta_2 \cdots \beta_n} \quad (n > 1)
\]

and

\[
\alpha_n Q_n(x) = (\alpha_n + \beta_n + \gamma_n - x) Q_{n-1}(x) - \beta_n Q_{n-2}(x)
\]

\(Q_0(x) = 1, \quad \alpha_1 Q_1(x) = \alpha_1 + \gamma_1 - x \)
birth-death processes with killing

\[p_{i,j}(t) = \pi_j \int_0^\infty e^{-xt} Q_i(x)Q_j(x)\psi(dx) \]

\[t = 0: \quad \delta_{i,j} = \pi_j \int_0^\infty Q_i(x)Q_j(x)\psi(dx) \]

defining

\[P_n(x) = (-1)^n \alpha_1 \alpha_2 \ldots \alpha_n Q_n(x) \]

we have

\[P_n(x) = (x - \alpha_n - \beta_n - \gamma_n)P_{n-1}(x) - \alpha_{n-1}\beta_nP_{n-2}(x) \]

\[P_0(x) = 1, \quad P_1(x) = x - \alpha_1 - \gamma_1 \]

OPS with respect to measure \(\psi \) on \([0,\infty)\)!
zeros of orthogonal polynomials

note: let

\[
R_n = \begin{pmatrix}
0 & 0 & 0 & \ldots & \ldots \\
-\alpha_1 - \gamma_1 & \alpha_1 & 0 & \ldots & \ldots \\
\beta_2 & -\alpha_2 - \beta_2 - \gamma_2 & \alpha_2 & \ldots & \ldots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
\ldots & \ldots & \ldots & \ldots & \alpha_{n-1} \\
\ldots & \ldots & \ldots & \beta_n & -\alpha_n - \beta_n - \gamma_n
\end{pmatrix}
\]

truncated q-matrix of birth-death process with killing, then

\[
P_n(x) = \det(xI_n + R_n)
\]

so zeros of $P_n(x)$ are eigenvalues of $-R_n$
birth-death processes: decay rate

\[p_{ij}(t) = \pi_j \int_0^{\infty} e^{-xt} Q_i(x)Q_j(x)\psi(dx) \]

hence

\[p_j := \lim_{t \to \infty} p_{ij}(t) = \pi_j \psi(\{0\}) \]

\[p_{ij}(t) - p_j = \pi_j \int_0^{\infty} e^{-xt} Q_i(x)Q_j(x)\psi(dx) \]

interest: decay rate

\[\delta = \xi_1 + \xi_2\mathbb{I}_{\{\xi_1=0\}} \]

note: if \(\psi(\{0\}) = 0 \) then \(\xi_1 > 0 \) or \(\xi_1 = \xi_2 = 0 \), so that \(\delta = \xi_1 \);
if \(\psi(\{0\}) > 0 \) then \(\xi_1 = 0 \), so that \(\delta = \xi_2 \)
birth-death processes: decay rate

given: birth rates α_n, death rates β_{n+1} and killing rates γ_n, $n \geq 1$

problem: determine decay rate $\delta = \xi_1 + \xi_2 \mathbb{I}_{\{\xi_1 = 0\}}$

recall: if $\gamma_n \equiv 0$ then $\psi(\{0\}) \geq 0$ is known; if $\gamma_n > 0$ for some n then $\psi(\{0\}) = 0$

if $\psi(\{0\}) = 0$ (and hence $\delta = \xi_1$):

Q1: $\xi_1 = \ ?$

Q2: $\xi_1 > 0 \ ?$

if $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (and hence $\xi_1 = 0$ and $\delta = \xi_2$):

Q3: $\xi_2 = \ ?$ (spectral gap)

Q4: $\xi_2 > 0 \ ?$
birth-death processes: decay rate

problem: determine \(\delta = \xi_1 + \xi_2 \mathbb{I}_{\{\xi_1=0\}} \)

approach if \(\psi(\{0\}) = 0 \) (hence \(\delta = \xi_1 \)): representations for \(\xi_1 \)

approach if \(\gamma_n \equiv 0 \) and \(\psi(\{0\}) > 0 \) (hence \(\delta = \xi_2 \)): dual process

definition: given \(\alpha_n, \beta_{n+1} \) and \(\gamma_n \equiv 0 \) the dual process has rates

\[
\tilde{\alpha}_n := \beta_{n+1}, \quad \tilde{\beta}_{n+1} := \alpha_{n+1}, \quad \tilde{\gamma}_1 := \alpha_1, \quad \tilde{\gamma}_n := 0 \quad (n > 1)
\]

then \(\{\tilde{P}_n(x)\} \) OPS w.r.t \(\tilde{\psi} : \)

\[
\alpha_1 \tilde{\psi}([0, x]) = \int_0^x u \psi(du), \quad x \geq 0
\]

hence

\[
\xi_2 = \tilde{\xi}_1
\]
birth-death processes: decay rate

recall: (Geršgorin discs)

\[\xi_1 = \max_{a>0} \inf_i \left\{ c_i - a_i + 1 - \frac{\lambda_i}{a_i} \right\} \]

where \(c_1 = \alpha_1 + \gamma_1 \) and

\[c_i = \alpha_i + \beta_i + \gamma_i, \quad \lambda_i = \alpha_{i-1} \beta_i \quad (i > 1) \]

so, if \(\gamma_i \equiv 0 \) and \(\psi(\{0\}) > 0 \) (hence \(\delta = \xi_2 \)) then

\[\delta = \xi_2 = \tilde{\xi}_1 = \max_{a>0} \inf_i \left\{ \tilde{\alpha}_i + \tilde{\beta}_i + \tilde{\gamma}_i - a_i + 1 - \frac{\tilde{\alpha}_{i-1} \tilde{\beta}_i}{a_i} \right\} \]

\[= \max_{a>0} \inf_i \left\{ \alpha_i + \beta_{i+1} - a_i + 1 - \frac{\alpha_i \beta_i}{a_i} \right\} \]
decay rate: more recent results

setting: $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (so that $\xi_1 = 0$ and $\delta = \xi_2$)

Geršgorin + duality:

$$\delta = \max_{a > 0} \inf_i \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

$$\delta = \max_{a > 0} \inf_i \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

$$= \min_{a > 0} \sup_i \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

where $\beta_1 = 0$, $a = (a_1, a_2, \ldots)$
Setting: $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (so that $\xi_1 = 0$ and $\delta = \xi_2$)

Miclo (1999), Chen (2000):

$$\delta > 0 \iff \sup_i \left\{ \left(\sum_{j \leq i} \frac{1}{\alpha_j \pi_j} \right) \left(\sum_{j > i} \pi_j \right) \right\} < \infty$$

where

$$\pi_1 = 1, \quad \pi_j = \frac{\alpha_1 \cdots \alpha_{j-1}}{\beta_2 \cdots \beta_j} \quad (j > 1)$$

Recall: $\psi(\{0\}) > 0 \iff \sum_j \pi_j < \infty$
implications for OP’s

translation Miclo-Chen result: explicit criterion for positivity of spectral gap if ξ_1 is known

Theorem: let

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

and suppose $\xi_1 > -\infty$ then, defining $\pi_1 = 1, \alpha_1 = c_1 - \xi_1$ and, for $n > 1$,

$$\beta_n = \frac{\lambda_n}{\alpha_{n-1}}, \quad \alpha_n = c_n - \xi_1 - \beta_n$$

$$\pi_n = (\alpha_1 \ldots \alpha_{n-1})/(\beta_2 \ldots \beta_n)$$

we have

$$\xi_2 > \xi_1 \iff \sup_i \left\{ \left(\sum_{j \leq i} \frac{1}{\alpha_j \pi_j} \right) \left(\sum_{j > i} \pi_j \right) \right\} < \infty$$
decay rate: more recent results

setting: $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (so that $\xi_1 = 0$ and $\delta = \xi_2$)

Geršgorin + duality:

$$\delta = \max_{a > 0} \inf_i \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

$$\delta = \max_{a > 0} \inf_i \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\} = \min_{a > 0} \sup_i \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

where $\beta_1 = 0$, $a = (a_1, a_2, \ldots)$
extreme zeros of orthogonal polynomials

Granovsky-Zeifman-Chen result suggestive of

Theorem: let

\[P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x) \]
\[P_0(x) = 1, \quad P_1(x) = x - c_1 \]

then, not only

\[\xi_1 = \max_{a > 0} \inf_i \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\} \]

but also

\[\xi_1 = \min_{a > 0} \sup_i \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\} \]
more generally:
Granovsky-Zeifman-Chen result suggestive of

Theorem: let

\[P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x) \]
\[P_0(x) = 1, \quad P_1(x) = x - c_1 \]

then, not only

\[x_{n1} = \max_{a > 0} \min_{i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\} \]

but also

\[x_{n1} = \min_{a > 0} \max_{i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\} \]
extreme zeros of orthogonal polynomials

\{P_n(x), \ n = 0, 1, \ldots\} is OPS satisfying

\[P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x) \]
\[P_0(x) = 1, \quad P_1(x) = x - c_1 \]

with \(c_n \in \mathbb{R}, \ \lambda_n > 0 \)

recall: zeros of \(P_n(x) \) are eigenvalues of

\[
T_n = \begin{pmatrix}
 c_1 & \lambda_2/a_2 & 0 & \cdots & \cdots \\
 a_2 & c_2 & \lambda_3/a_3 & \cdots & \cdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \cdots & \cdots & \cdots & c_{n-1} & \lambda_{n}/a_n \\
 \cdots & \cdots & \cdots & 0 & a_n & c_n
\end{pmatrix}
\]

where \(a_j > 0 \)
extreme zeros of orthogonal polynomials

Theorem:

\[x_{nn} = \max_{a > 0} \min_{i \leq n} \left\{ c_i + a_{i+1} + \frac{\lambda_i}{a_i} \right\} \]

Proof: Perron-Frobenius theory for positive matrices

\[\tilde{T}_n := T_n + dI \] positive for \(d \) sufficiently large, corresponds to \(\tilde{c}_n := c_n + d, \tilde{\lambda}_n := \lambda_n \), and has eigenvalues \(\tilde{x}_{ni} = x_{ni} + d \)

Collatz-Wielandt:

\[x_{nn} = \max_{x > 0} \min_{i} \frac{(T_n x)_i}{x_i} = \min_{x > 0} \max_{i} \frac{(T_n x)_i}{x_i} \]

Corollary:

\[x_{n1} = \min_{a > 0} \max_{i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\} \]