- Workshop on Stochastics and Special Functions -

Combinatorics of Orthogonal Polynomials – Perturbed Chebyshev polynomials –

Richard Brak

Mathematics and Statistics of Complex systems Department of Mathematics and Statistics University of Melbourne

May 22, 2009

Orthogonal Polynomials: Two questions

Definition (Moment functional)

Let $\{\mu_n\}_{n \ge 0}$, $\mu_n \in \mathbb{C}$ be a sequence, called the *moment sequence*, and $\mathcal{L} : \mathbb{C}(x) \to \mathbb{C}$ a functional acting on polynomials $\mathbb{C}(x)$. Then \mathcal{L} is called a moment functional if

1 \mathcal{L} is linear 2 $\mathcal{L}(x^n) = \mu_n, n \ge 0$

Definition (Orthogonal Polynomials)

Let $\{P_k(x)\}_{k\geq 0}$ be a sequence of polynomials in x with coefficients in the field \mathbb{C} . The polynomials are orthogonal with respect to a moment functional \mathcal{L} if, for all $n, m \geq 0$,

1 deg
$$(P_n) = n$$

2 $\mathcal{L}(P_n P_m) = \Lambda_n \delta_{n,m}, \ \Lambda_n \in \mathbb{C} \setminus 0$

- Question: Given a moment sequence {μ_n}_{n≥0} does there exist an orthogonal polynomial sequence?
- Answer: Yes, so long as the Hankel determinants do not vanish.

$$H_n = \begin{pmatrix} \mu_0 & \cdots & \mu_n \\ \vdots & \ddots & \vdots \\ \mu_n & \cdots & \mu_{2n} \end{pmatrix}$$

then

$$P_n(x) = \frac{1}{\det H_{n-1}} \det \begin{pmatrix} \mu_0 & \cdots & \mu_n \\ \vdots & \ddots & \vdots \\ \mu_{n-1} & \cdots & \mu_{2n-1} \\ 1 & \cdots & x^n \end{pmatrix}$$

٠

Question: Give a sequence of orthogonal polynomials
 {*P_k(x)*}_{k≥0} that satisfy the classical three term recurrence
 does there exists a moment sequence and linear functional
 which they are orthogonal with respect to?

Theorem (Favard)

Let $\{b_k\}_{k\geq 0}$ and $\{\lambda_k\}_{k\geq 1}$ be sequences with $b_k, \lambda_k \in \mathbb{C}$ and let $\{P_k(x)\}_{k\geq 0}$ be a sequence of polynomials satisfying

$$P_{k+1}(x) = (x - b_k)P_k(x) - \lambda_k P_{k-1}(x)$$
 $k \ge 1$
 $P_0 = 1,$ $P_1 = x - b_0$

Then there exists a unique moment functional $\mathcal{L} : x^n \to \mu_n$ such that $\{P_k(x)\}_{k\geq 0}$ are a monic orthogonal sequence with respect to \mathcal{L} iff $\lambda_n \neq 0$ for all $n \geq 1$.

• Compute $\{\mu_n\}_{n \ge 0}$ recursively $\mathcal{L}(1) = \mu_0$, $\mathcal{L}(P_n) = 0$, n > 0.

Orthogonal Polynomials: Combinatorics

- We would like a combinatorial representation:
 - · Combinatorial computation of polynomials and moments
 - Combinatorial proofs; Favard, orthogonality etc.
 - Orthogonal polynomial results give combinatorial answers
- Two fundamental representations

$$P_n(x) = \sum_{\pi \in \mathbb{P}_n} w(\pi)$$
$$\mu_n = \sum_{\tau \in \mathbb{M}_n(0,0)} w(\tau)$$

 \mathbb{P}_n = Set of pavings on a line of *n* vertices $\mathbb{M}_n(0,0)$ = Set of $0 \rightarrow 0$ Motzkin paths with *n* steps

and $w(\pi)$, $w(\tau)$ is the respective weights.

Combinatorial Objects

Definitions of pavings and paths - by example

- Paving: Line segment with *n* vertices by:
 - 'monomers' weights $\{b_k\}_{k \ge 0}$
 - 'dimers' weights $\{\lambda_k\}_{k \ge 0}$

• Example: Hermite polynomials: $b_k = 0$, $\lambda_k = k$

$$k=3:$$
 $x x x + -1 x + x -2 \Rightarrow H_3 = x^3 - 3x$

- Motzkin paths: n steps: 'up', 'down' and 'horizontal'
 - down steps weights $\{b_k\}_{k \ge 0}$
 - horizontal steps weights {λ_k}_{k≥0}

• Example: Hermite polynomials: $b_k = 0$, $\lambda_k = k$

In general $\mu_n = (n-1)!! n$ even ie. number of fixed point free involutions – bijection.

Dual representation

Hankel determinants

$$H_n = \begin{pmatrix} \mu_0 & \cdots & \mu_n \\ \vdots & \ddots & \vdots \\ \mu_n & \cdots & \mu_{2n} \end{pmatrix} \qquad P_n(x) \sim \det \begin{pmatrix} \mu_0 & \cdots & \mu_n \\ \vdots & \ddots & \vdots \\ \mu_{n-1} & \cdots & \mu_{2n-1} \\ 1 & \cdots & x^n \end{pmatrix}.$$

Combinatorially the KMLGV theorem gives:

det H_n = number of n 'non-intersecting' Motzkin paths from -k to k.

Combinatorial proofs

•
$$P_{k+1}(x) = (x - b_k)P_k(x) - \lambda_k P_{k-1}(x)$$

• $P_k(x) = \sum_{\pi \in \mathbb{P}_n} w(\pi)$

Continued fraction connection

• Generating function for moments ie. Motzkin paths:

$$M(t)=\sum_{n\geq 0}\mu_nt^n.$$

• Jacobi continued fractions:

$$M(t) = \frac{1}{1 - b_0 t - \frac{\lambda_1 t^2}{1 - b_1 t - \frac{\lambda_2 t^2}{1 - b_1 t - b_1 t - \frac{\lambda_2 t^2}{1 - b_1 t - b$$

• Convergents – truncate at level L: set $\lambda_L \rightarrow 0$ and simplify

$$M(t) = \frac{N_{L-1}(t)}{D_L(t)}, \qquad N_k(t) = \hat{P}_k^*(t), \qquad D_n(t) = \hat{P}_n(t)$$

 \hat{P}_n is the reciprocal orthogonal polynomial: $\hat{P}_n(t) = t^{-n} P_n(1/t)$

Setting $\lambda_L \rightarrow 0$ means Motzkin paths cannot have any steps at or above height *L*.

• $M(t) = \frac{N_{L-1}(t)}{D_L(t)}$ generates Motzkin paths in strip of width n

Applications

Asymmetric Simple Exclusion Process (ASEP).

• Stationary State normalisation: $Z_N(\alpha, \beta)$.

$$\begin{split} \bar{\alpha} &= 1/\alpha, \ \bar{\beta} = 1/\beta, \ \kappa^2 = 1 - (1 - \bar{\alpha})(1 - \bar{\beta}): \\ \text{Motzkin with } \lambda_1 &= \bar{\alpha}\bar{\beta} \text{ and } \lambda_2 = \kappa^2, \ \lambda_k = 1, \ k > 2. \end{split}$$

More generally, other problems (polymers interacting with a strip) require $b_k = 0$ and $\lambda_1 = -\rho$ and $\lambda_L = -\omega$, $\lambda_k = -1$, $k \neq 1, L$. (joint work with J-A. Osborn)

- If $\lambda_k = 1$, $k \ge 1$ then Chebyshev of the first kind.
- Thus we have the following paving problem to solve.

But first *k* < *L* − 1

• Set of pavings partitions into two:

• or combinatorially

 Thus for the two 'defect' case k > L - 1. There are four cases:

Thus we have,

Proposition

The orthogonal polynomial sequence P_n with $\lambda_1 = \rho$, $\lambda_{L-1} = \omega$ and $\lambda_k = 1$, $k \neq 1, L-1$ is given by

$$P_{k} = T_{k} + (1 - \rho) T_{k-2} + (1 - \omega) T_{L-1} T_{k-L-1} + (1 - \rho) (1 - \omega) T_{L-3} T_{k-L-1}$$

where $T_k(x)$ are the Chebyshev (like) polynomials

$$T_{k+1} = xT_k(x) - T_{k-1}(x), \qquad P_1 = x, \quad P_0 = 1.$$

Thank You.