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Abstract

A metapopulation is a population which can occupy regions, or ‘patches’, which
are separated geographically. Each patch at any given time can be either occupied
or unoccupied by the population. If a patch is empty, it may be colonized by the
inhabitants of one (or several) of the other patches through a migration process. So
patches in a metapopulation may undergo several local extinctions or recolonizations
over time. It is also possible that all patches may become extinct. We may model
these dynamics using a Markov chain, as we do in this investigation. First a simple
discrete time model is investigated. We adjust this model to create a more realistic
model. Several models used by other researchers are also examined. We then look
at a continuous time model. Much modelling for metapopulations is done using
discrete time Markov chains. However, using continuous time Markov chains can at
times be simpler, as we shall see. When applied to a real metapopulation, the models
investigated should have the parameters of the model estimated through study of the
particular metapopulation. Regrettably, no data was used to estimate parameters in
this investigation.

1 A Discrete Time Model

First we examine a very simple discrete time Markov chain model of a general metapopu-
lation. This is used when only the number of occupied patches is of importance. Our state
space is S = {0, 1, . . . , N}, where N is the number of available patches. We wish to create a
transition probability matrix P which contains the probabilities of all possible transitions
between the numbers of occupied patches in one time period. To simplify this process,
here we assume that each population has an equal chance of being colonized by any other
patch, and that each patch is equally likely to become extinct in one time period. These
are rather poor assumptions, as they would indicate that the patches are equidistant from
each other and of equal size, and have equally desirable environmental properties. The
tedious counting exercise of creating P can become very difficult for even relatively small
numbers of patches. Thus, a method often used by ecologists, and which we adopt here,
is to split the matrix P into two transition probability matrices C and E, which contain
colonization transition probabilities and extinction transition probabilities respectively.
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Let p be the probability that a particular occupied patch colonizes a particular unoc-
cupied patch. To create a colonization matrix we use several assumptions:

• Any occupied patch may (but will not necessarily) colonize more than one patch in
a single time step.

• More than one patch may colonize an unoccupied patch at the same time.

• Each unoccupied patch is equally likely to be colonized by any of the occupied patches
(This assumes that the patches are equidistant and the same size as each other)

Below is the colonization matrix C for a 3 patch system.

C =


1 0 0 0
0 (1− p)2 2p(1− p) p2

0 0 (1− p)2 2p(1− p) + p2

0 0 0 1


The above matrix was found by counting the number of possible colonizations for each
initial state. Note that the number of patches occupied cannot decrease in the colonization
transition stage.

The creation of C can be generalised for N patches1. Assume that we begin with i
occupied patches. If patch m is not occupied, then there is a probability of (1 − p)i that
none of the patches will colonize patch m. Therefore the probability that at least one of
the patches will infect patch m is 1− (1− p)i. Initially, N − i patches are not infected. So,
the probability that x new patches are infected during one time period is equal to

P (x new colonies) =

(
N − i

x

)
(1 − (1 − p)i)x ((1 − p)i)N−i−x (1)

- a binomial distribution. So to create C, since cij is the probability that j patches will be
occupied after a time step if i were initially ocupied, then we can just put x = j − i (with
j ≥ i) in the above formula to find cij (j ≥ i). That is,

cij =

(
N − i
j − i

)
(1 − (1 − p)i)j−i((1 − p)i)N−j j ≥ i (2)

Let q be the probability that an occupied patch goes extinct in a single time period.
Then clearly

eij =

(
i

i− j

)
qi−j(1− q)j j ≤ i (3)

Note that 0 is the absorbing state for both C and E.
From these we can create two overall transition probability matrices; either P = CE or

P = EC. This is a crude method, since this assumes that the colonization and extinction

1Thanks to M. Nester
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processes cannot occur at the same time. P = CE assumes that first colonization, then
extinction occurs in one time period. This is surely a poor assumption in most cases.

To investigate how the order affects the model, we may look at the distribution nt at
time t, given by

nt = n0CE

nt = n0EC

where n0 is the initial distribution. A brief investigation showed that this order does affect
the result, but affects it most for small numbers of time steps.

2 A Stochastic Metapopulation Model with Variabil-

ity in Patch Size and Position - J. Day and H. Poss-

ingham

The paper A Stochastic Metapopulation Model with Variability in Patch Size and Position2

provides a more realistic model but for a specific metapopulation (malleefowl of South
Australia in an eight patch system). This model was used to investigate which patches
were occupied, allowing for differences in size and distance between patches. However, the
model also used separate transition probability matrices C and E for the colonization and
extinction probabilities respectively. The paper uses only the order P = EC.

To investigate the affect that the order would have if CE were to be used, a two patch
case was examined, and the same assumptions about extinction and colonizing probabilities
as in the paper were made. The same total area was also used in order to preserve as many
of the properties as possible. In the paper, the following assumptions were made:

• Annual extinction probabilities ai, for patch i with area Ai is ai = 13/Ai.

• The probability of i colonizing j is given by bij = 0.005e−1/5
√

dij where dij is the
distance between patches i and j.

• The model used by the paper keeps track of which patches are occupied, so, in a two
patch system, there are actually four possible states.

I created a MATLAB3 m-file to investigate the difference that the order had on the distri-
bution after different numbers of time periods. In this program I could:

• Alter patch size, so that the patches may or may not be of equal size.

• Alter the distance beween the two patches.

• Alter the initial distribution.

2J. Day, H. Possingham A Stochastic Metapopulation Model with Variability in Patch Size and Position
Theoretical Population biology Vol 48, pp333-360 (1995) Academic Press, Inc

3MATLAB (2004) The Mathworks, Inc
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I found that using the different orders did not produce very different results for the two
patch system. I did find that equal patch sizes decreased the probability of extinction,
while increasing the distance between patches only marginally increased the probability of
extinction.

3 Patches with a nearby mainland

The idea here is to model a metapopulation assuming that there is a ‘mainland’ nearby. It is
assumed that a mainland population never goes extinct, and so there is always a positive
probability of an unoccupied patch being colonized. In addition, there is no absorbing
state. Further to the assumptions made previously in Section 1, we also assume that each
patch is equally likely (of probability a) to be colonized by the mainland, so all patches
are equidistant from the mainland and the probability of the mainland colonizing any of
the patches is time independent. The mainland is not considered a patch - it only affects
immigration to the patches (so the mainland will not affect the E matrix from our first
model; it will only affect C).

Below is the colonization matrix C for a 2 patch system:

C =

(1− a)2 2a(1− a) a2

0 (1− a)(1− p) (1− a)p + a(1− p) + ap
0 0 1


The above matrix was found by counting the possibilities. A general formula for filling in
the matrix could be found by altering the formula we had for the case without a mainland,
but this was not done here. Alternatively, we could make a separate transition probability
matrix A for colonizations from the mainland, and so could create P in several ways -
P = ACE, P = AEC, P = EAC, P = ECA, P = CEA, or P = CAE. Such a matrix
A would be easily constructed, but has not been constructed here. The question of which
order to use could be quite difficult, however. This model is even less realistic than the
model used in Section 1, since we assume here that transitions occur in three separate
events - interpatch colonization, extinction and colonization from the mainland - which is
surely not the case.

4 The quasi-stationary distribution

The quasi-stationary distribution is used to model the behaviour of a Markov chain as-
suming that extinction has not yet occured. It is the limit of the conditional distribution
(conditioned on non-extinction). It is only useful if the Markov chain avoids the absorbing
state for a substantial period of time, and when the conditional distribution approaches
its limit quickly. Here a model that only kept track of the number of patches that are oc-
cupied was used to investigate the quasi-stationary distribution for metapopulations. The
quasi-stationary distribution was found using the method described in P. Pollett’s Limiting
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conditional distributions for stochastic metapopulation models4 - the left eigenvector of the
transition matrix (with the absorbing state removed) corresponding to the eigenvalue of
the largest modulus is the quasi-stationary distribution.

The paper states that the closer the expression |ρ2|/ρ1 (assuming ρ2 is real) is to 0 and
the closer ρ1 is to 1, where ρ1 = the largest eigenvalue of the transition matrix without
the absorbing state, and ρ2 = the eigenvalue of the second largest absolute value, the more
appropriate is the use of the quasi-stationary distribution. The first expression measures
how quickly the conditional distribution approaches the limit, and the closer ρ1 is to 1,
the greater the expected time to absorption. The findings just confirmed what one would
expect:

• The larger the number of patches, the better and more appropriate is the use of
the quasi-stationary distribution (since this would increase the chance of the system
avoiding the absorbing state zero) and

• the larger p is compared to q, the better and more appropriate is the use of the
quasi-stationary distribution (since there is a higher probability of a higher number
of patches being occupied, and thus a higher probability of the system avoiding
extinction).

I found that even when the eigenvalues suggest that the quasi-stationary distribution
is appropriate, the difference between the EC and CE quasi-stationary distributions can
be alarming. For example,

n CE QS EC QS |ρ2|/ρ1 ρ1 p q
3 (0.0074, 0.1375, 0.8551) (0.0001, 0.0027, 0.9972) 0.0305 0.9999 0.9 0.05
3 (0.5664, 0.3552, 0.0784) (0.1416, 0.3720, 0.4864) 0.1985 0.7754 0.5 0.5

i.e. Assuming that extinction occurs first increases the probability of a higher number of
patches being occupied in the quasi-stationary distribution.

5 Continuous Time Markov Chains

Instead of viewing this as a discrete time Markov chain we may model it as a continuous
time Markov chain. One difference here is that we may calculate probabilities for any time
t ≥ 0, as opposed to the discrete case when we were restricted to finding probabilities after
an integer number of time steps. However, one of the more powerful differences between
the discrete and the continuous models is that for the continuous case there is no need to
split the process up into two processes: colonizations and extinctions. A very brief outline
of continuous time Markov chains appears below:

First we define Pij(t) = P (X(t + s) = j|X(s) = i)
Conditions used for continuous time Markov chains are:

4P. Pollett Limiting conditional distributions for stochastic metapopulation models Proceedings of the
3rd Asia-Pacific Conference on Communications, Vol 3 pp1489-1493 IREE Society of Australia
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• Pij(t) ≥ 0

•
∑N

j=0 Pij(t) = 1, i, j = 0, 1, ..., N

• Pij(s + t) =
∑N

k=0 Pik(s)Pkj(t)

• and

lim
t→0+

Pij(t) =

{
1, if i = j

0, if i 6= j

One can create a matrix Q describing the process by defining
qii = limh→0+

1−Pii(h)
h

= infinitesimal probability of leaving state i.

qij = limh→0+
Pij(h)

h
= infinitesimal probability of moving from state i to state j.

so that
P (X(t + h) = j|X(t) = i) = qijh + o(h) for i 6= j

P (X(t + h) = i|X(t) = i) = 1− qiih + o(h)

o(h) is a neglible remainder term.
From this we create a matrix Q with −qii along the diagonal and qij off the diagonal.

But Q = P ′(0) = limh→0+
P (h)−I

h
So we can write

P (t + h)− P (t)

h
=

P (t)(P (h)− I)

h
= P (t)

P (h)− I

h

Taking the limit, we get P ′(t) = P (t)Q, the solution of which is P (t) = exp(Qt)
Here we use an SIS model:

q(n, n + 1) = c
n

N
(N − n) (4)

q(n, n− 1) = en (5)

where n is the number of patches occupied at time t, N is the total number of patches,
c is the colonization rate and e is the extinction rate for the system. This is notably
different from the model that we used in the discrete time model, since the probability of
colonization is inversely proportional to the total number of patches.

So I created the Q matrix

Q =


0 0 0 0
e −(e + 2

3
c) 2

3
c 0

0 2e −2(e + 1
3
c) 2

3
c

0 0 3e −3e


So we have the general formula

qij =


q(n, n + 1) = c n

N
(N − n)

q(n, n− 1) = en

q(n, n) = −(q(n, n + 1) + q(n, n− 1))
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Note that there is no counting required here as there is in the discrete case. Also,
q(n, n + k)h for k ≥ 2 is o(h).

Now, the transition matrix P (t) is given by

P (t) = eQt = I +
∞∑

k=1

Qktk

k!

where I is the identity matrix. It is best to make this calculation computationally. In fact,
in most cases this cannot be determined analytically. Here, the program Expokit5 was used
for the calculation of the matrix exponential.

6 Comparing the Continuous Time and Discrete Time

Models

Comparing the continuous time and discrete time models could give us an indication of
which model is more appropriate. However, a problem with comparing our original model
from Section 1 to the continuous time model from Section 5 is that in the continuous
time model we assume that the probability of colonization is inversely proportional to N,
the number of patches available, whereas in the discrete time model we do not. A way to
ensure that our continuous and discrete time models are consistent is to alter our discrete
time model. Our new model is outlined below6:

Assume that in one time step, an unoccupied patch is colonized with probability ci =
(i/N)c, where c is a constant which describes the maximum potential for colonization. We
then have

cij =

(
N − i
j − i

)
cj−i
i (1− ci)

N−j (6)

We use the same model for the extinction as given by (3). So now we can create transition
probability matrices C and E for colonization and extinction respectively. Unfortunately,
once again our discrete time Markov chain model uses either the overall transition proba-
bility matrix CE or EC, while our continuous model is pleasing in that we do not have this
separation between extinction and colonization events. In order to investigate differences
between the continuous time and the two discrete time (CE and EC) models, I created a
MATLAB7 m-file which calculated the distibution after an input number of time periods
and input c and e, for an input number of patches, using a desired initial distribution.
Common sense would suggest that the continuous case is most accurate at giving proba-
bilities - since we make no assumptions about which event - colonization or extinction -
occurs first, or indeed, that they occur separately at all. The outcome of the investigation
was somewhat surprising, since I found that generally the CE discrete time model gives

5Sidje (1999)
6Thanks to P. Pollett
7MATLAB (2004) The MathWorks, Inc.
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a distribution which is closer to the continuous time model. For example, for an 8 patch
system with c=0.9, e=0.05, and t=50, then we have

Assume initial distibution is

v =

0 1 0 0 0 0 0 0 0

Then the final distribution is

For transition probability matrix CE

ans =

Columns 1 through 8

0.0427 0.0000 0.0000 0.0002 0.0016 0.0132 0.0802 0.3077

Column 9

0.5544

For transition probability matrix EC

ans =

Columns 1 through 8

0.0905 0.0000 0.0000 0.0000 0.0002 0.0015 0.0127 0.1011

Column 9

0.7940

Compare this to the continuous calculation

ans =

Columns 1 through 8

0.0643 0.0000 0.0000 0.0002 0.0018 0.0131 0.0739 0.2852

Column 9
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0.5614

Unfortunately, however, a thorough investigation into the differences between the contin-
uous time model and the discrete time models was not completed. A further study into
this may prove helpful. It is important to realize that the continuous time model was more
accurate than either of the two discrete time models presented here.
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