

Application of the Cross-Entropy Method to Clustering and Vector Quantization

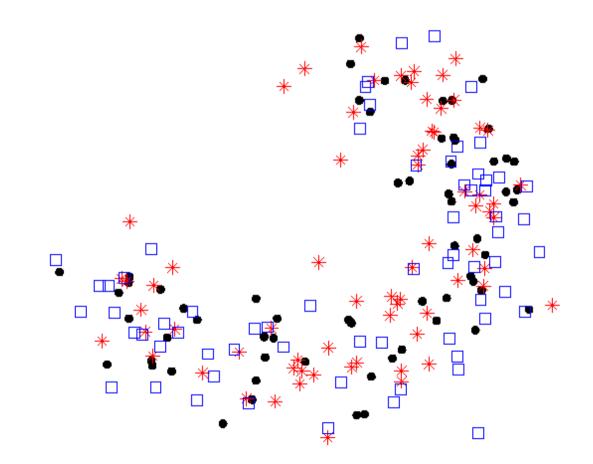
Dirk P. Kroese[†] and Reuven Y. Rubinstein[°] and Thomas Taimre[†]

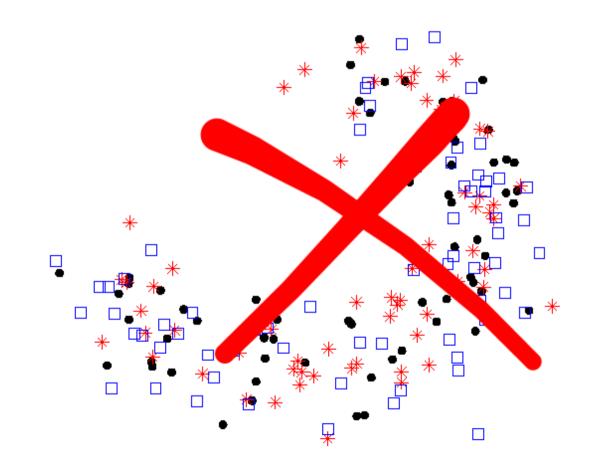
 [°] Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
[†]Department of Mathematics, The University of Queensland, Brisbane 4072, Australia

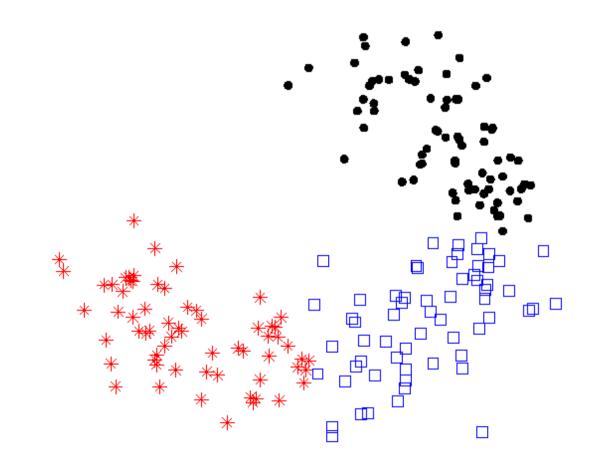
^{\$}Supported by the ARC Centre of Excellence: Mathematics and Statistics of Complex Systems (MASCOS). Presenting Author.

- Introduction
- Two CE Approaches
- Numerical Results
- Application
- Conclusions

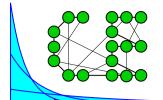
Application of the Cross-Entropy Method to Clustering and Vector Quantization -p.3/26







- **Cluster** : Data that are "similar" to each other
- Clustering and vector quantization : How to group "feature" vectors into clusters
- Applications : Communication, data compression and storage, database searching, pattern matching, and object recognition
- What We Do : Apply the cross-entropy (CE) method to problems in clustering and vector quantization.



Dataset
$$\mathcal{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_n\} \in \mathbb{R}^d$$

Partition into K disjoint clusters, $\{R_j\}$, in order to minimize a loss function:

$$\sum_{j=1}^{K} \sum_{\mathbf{z} \in \mathbf{R}_{j}} ||\mathbf{z} - \mathbf{c}_{j}||^{2}$$

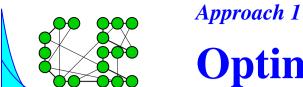
 c_j represents the cluster center or *centroid* of cluster R_j .

- Objective : Find $(\mathbf{c}_1, \dots, \mathbf{c}_K)$ and corresponding partition $\{R_1, \dots, R_K\}$ that *minimizes* the loss function.
- Two ways to think about this ...

Approach 1 : Optimizing Cluster Vector

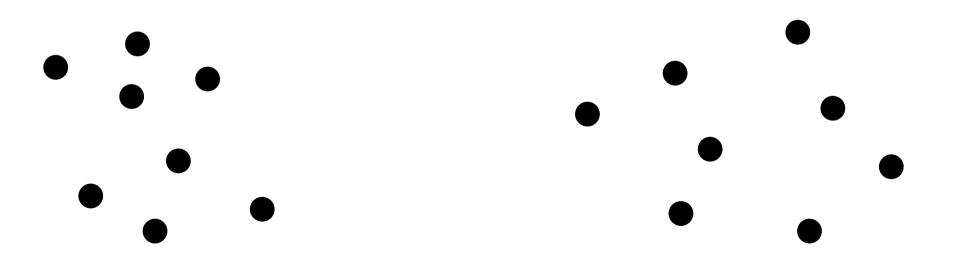
Approach 2 : Optimizing Cluster Centroids

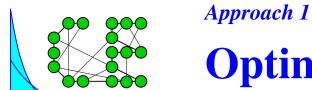
Application of the Cross-Entropy Method to Clustering and Vector Quantization – p.6/26



Optimizing Cluster Vector

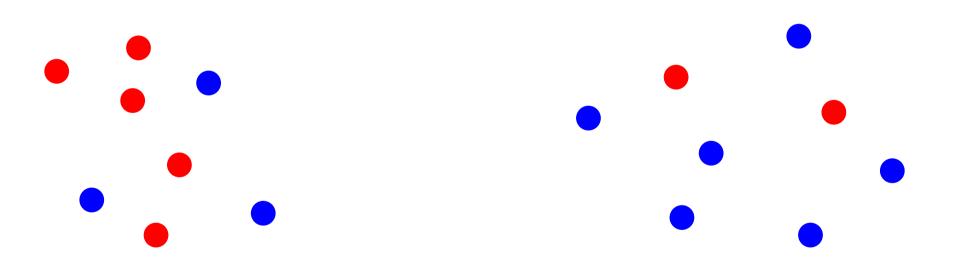
View loss function as a function of the clusters, rather than the centroids

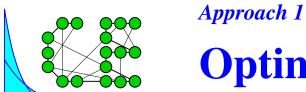




Optimizing Cluster Vector

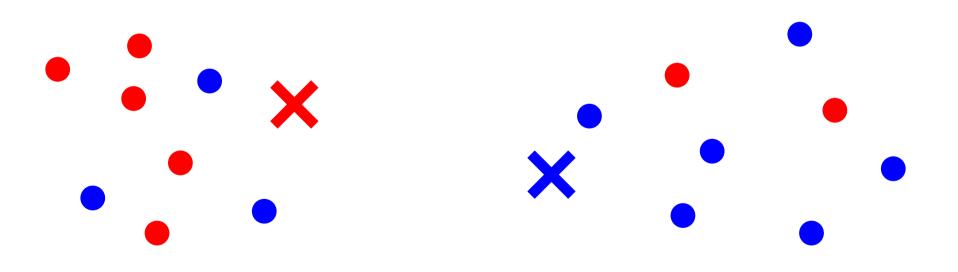
View loss function as a function of the clusters, rather than the centroids

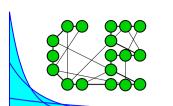




Optimizing Cluster Vector

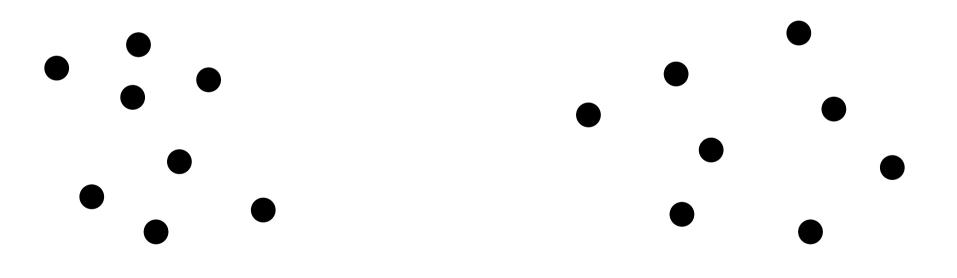
View loss function as a function of the clusters, rather than the centroids

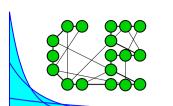




Optimizing Cluster Centroids

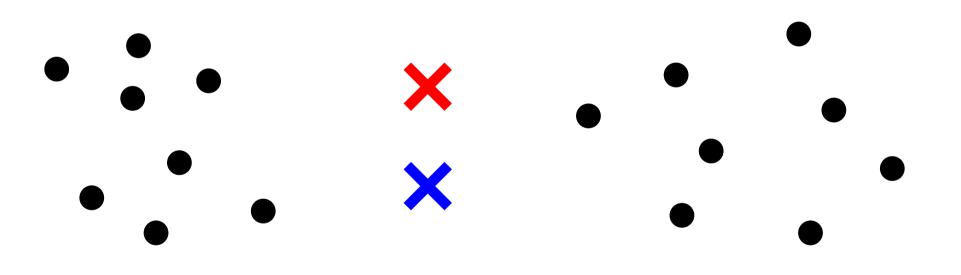
View loss function as a function of the centroids, rather than the clusters, with each point assigned to the nearest centroid

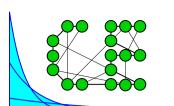




Optimizing Cluster Centroids

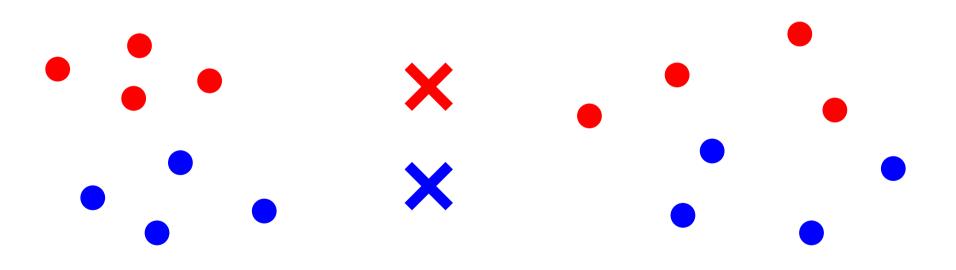
View loss function as a function of the centroids, rather than the clusters, with each point assigned to the nearest centroid





Optimizing Cluster Centroids

View loss function as a function of the centroids, rather than the clusters, with each point assigned to the nearest centroid

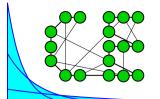


Problem: Maximize performance function $S(\mathbf{x})$ over all states \mathbf{x} in some set \mathcal{X} .

Problem: Maximize performance function $S(\mathbf{x})$ over all states \mathbf{x} in some set \mathcal{X} .

Algorithm:

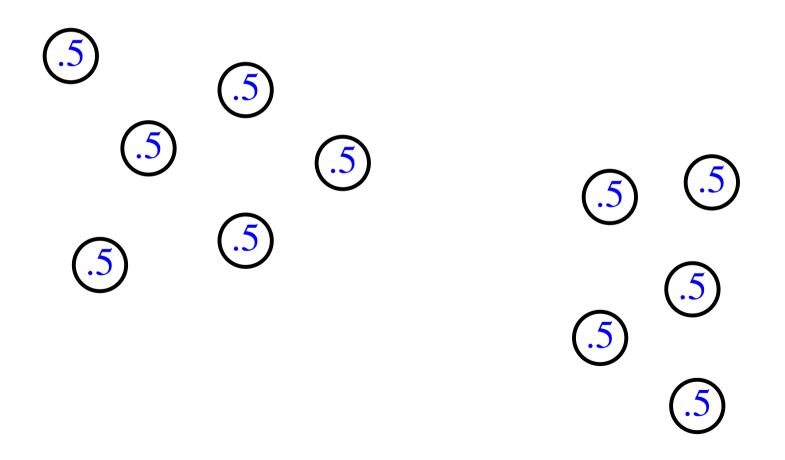
- 1. <u>Initialize</u> Set initial parameter vector \mathbf{v}_0 , set counter t = 1
- 2. <u>Generate</u> Draw X_1, \ldots, X_N from pdf with parameter vector v_{t-1}
- 3. <u>Score</u> Evaluate performance function $S(\mathbf{x})$ for each \mathbf{X}_i
- 4. Update Calculate v_t via CE using MLE's of the parameters, based on the best-scoring (elite) samples
- 5. <u>Stop</u>? Stop if convergence to a solution is suspected; otherwise, set t = t + 1 and reiterate from Step 2

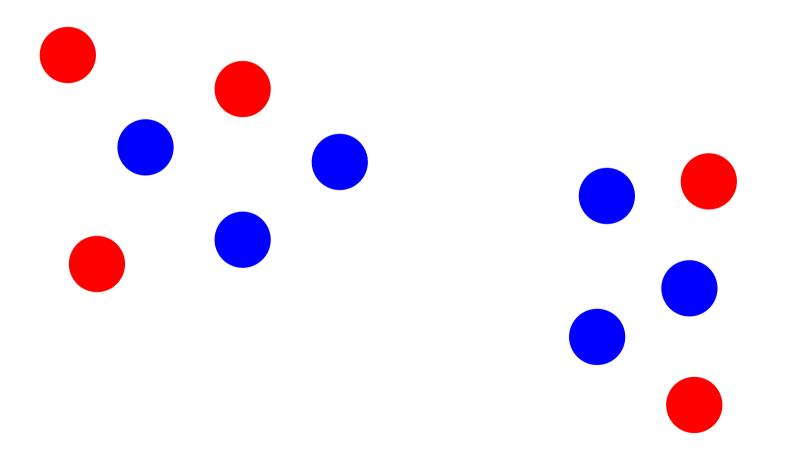


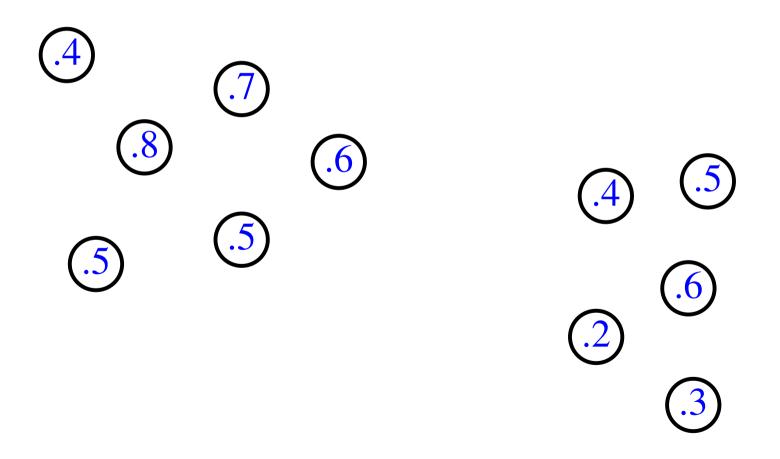
- First Approach Reduce the clustering problem to a combinatorial partition problem with n nodes and K partitions
 - Looking for cluster vector, which assigns a number $1, \ldots, K$ to each point corresponding to the partition $\{R_1, \ldots, R_K\}$
- Second Approach View optimizing loss function as a continuous multi-extremal optimization problem
 - Looking for centroids, $(\mathbf{c}_1, \ldots, \mathbf{c}_K)$

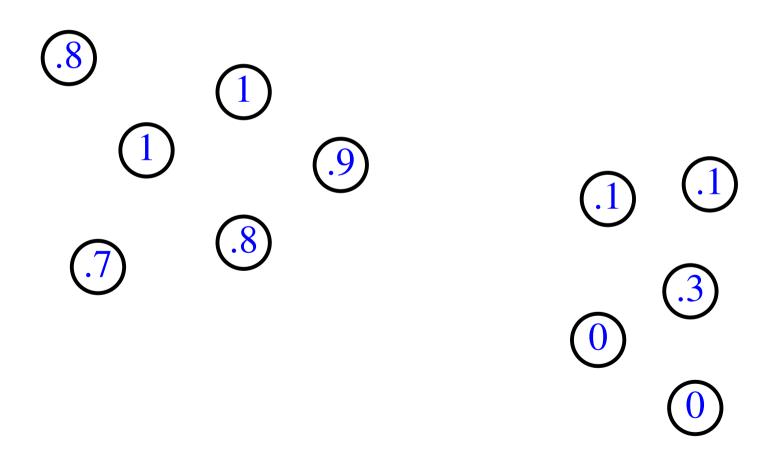
Performance function: $S(\mathbf{x}) = \sum_{j=1}^{K} \sum_{\mathbf{z} \in \mathbf{R}_j} ||\mathbf{z} - \mathbf{c}_j||^2$

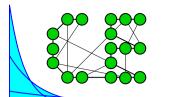
- 1. Draw random cluster vectors $\mathbf{X} \in \mathcal{X}$ from *n*-dim. discrete distribution with independent marginals, such that $\mathbb{P}(X_i = j) = p_{ij}$, i = 1, ..., n, j = 1, ..., K
- 2. Update p_{ij} (the probability that $X_i = j$) by taking the fraction of times that $X_i = j$ for the elite samples
- 3. Repeat until probabilities all close to 0 or 1







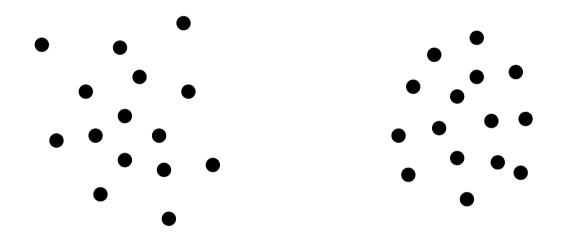


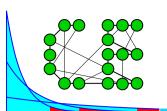


Performance function: $S(\mathbf{x}) = \sum_{j=1}^{K} \sum_{\mathbf{z} \in R_j} ||\mathbf{z} - \mathbf{c}_j||^2$

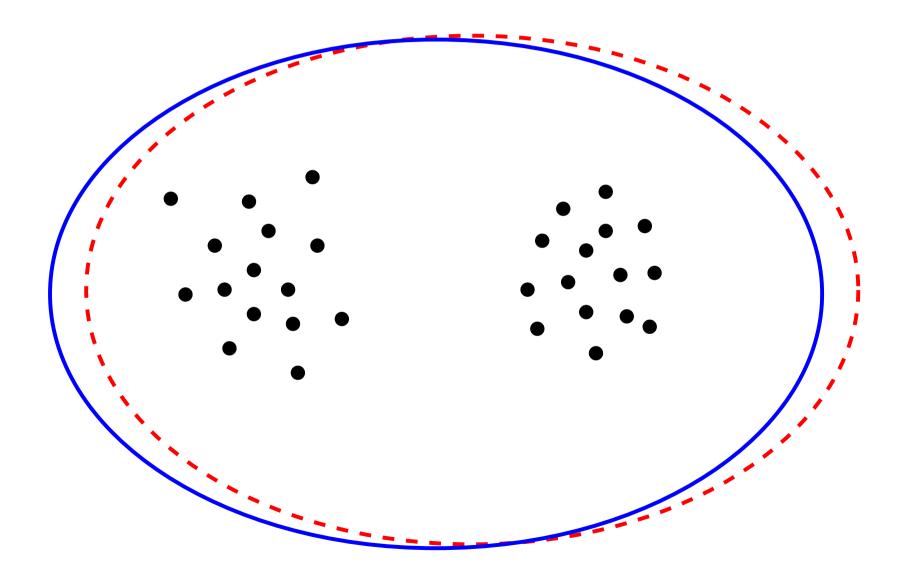
Approach 2

- Generate N sequences of K centroids independently from (typically) Gaussian pdfs
- 2. Update means and variances of pdfs with corresponding *sample* means and *sample* variances of the elite samples
- 3. Repeat until variances very small

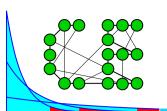




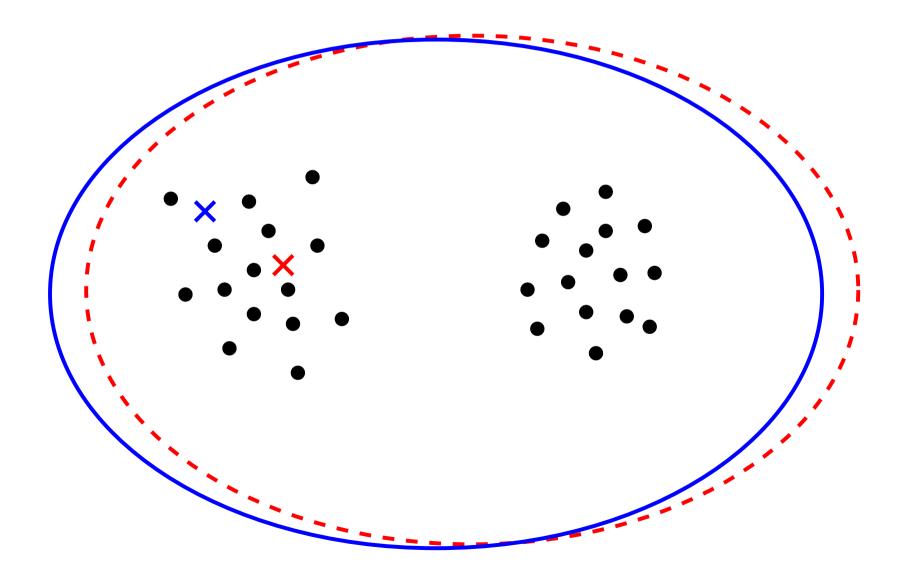
CE Cluster Centroids – Example



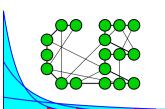
Application of the Cross-Entropy Method to Clustering and Vector Quantization – p.14/26



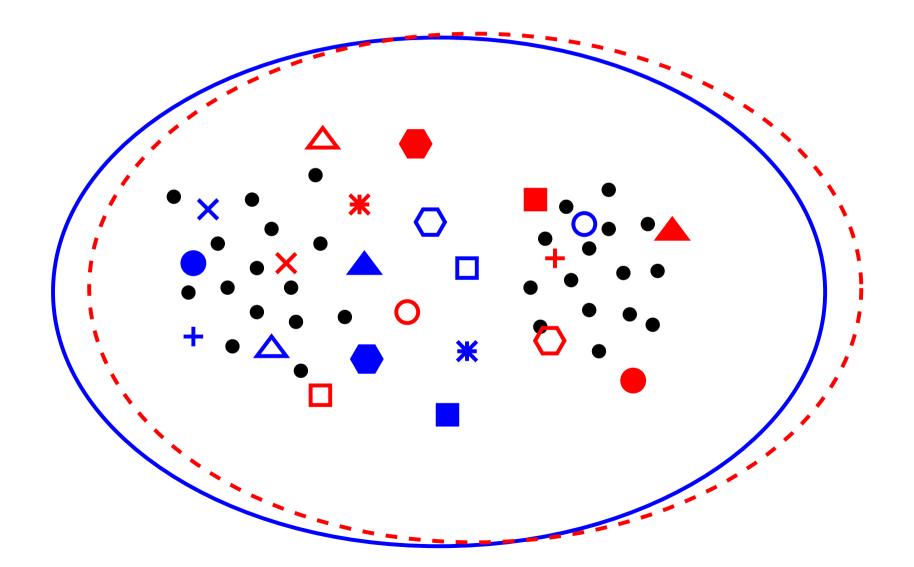
CE Cluster Centroids – Example



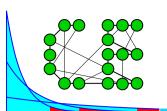
Application of the Cross-Entropy Method to Clustering and Vector Quantization – p.14/26



CE Cluster Centroids – Example



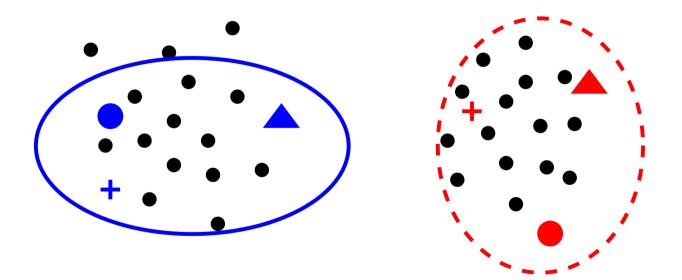
Application of the Cross-Entropy Method to Clustering and Vector Quantization -p.14/26

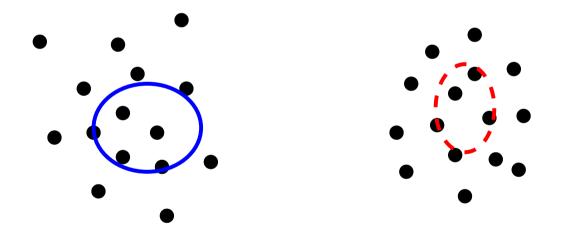


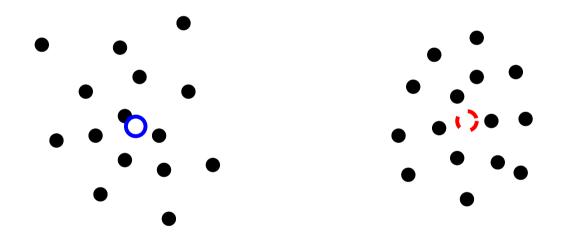
CE Cluster Centroids – Example



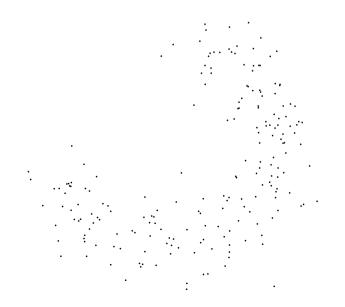
Application of the Cross-Entropy Method to Clustering and Vector Quantization – p.14/26







- Will focus on CE Approach 2 for the rest of this talk
- Setup : CE (Approach 2) vs K-means (KM), Fuzzy K-means (FKM) and Linear Vector Quantization (LVQ).
- Banana data set: 200 Points are scattered around a segment of a circle

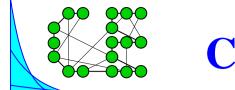


Banana Data Set, with K = 5 clusters

It.	Worst*	Best	Std. Dev.
1	452.18	377.37	3.00000
2	434.09	395.01	3.20577
3	420.91	366.87	3.38746
4	403.82	356.78	3.16696
5	374.37	336.55	3.30599
6	364.62	333.48	2.94838
7	344.82	325.18	2.53459
8	333.42	313.58	2.22936
9	317.22	302.15	1.58735
10	305.09	295.90	1.15077
11	296.10	292.34	0.65408

It.	Worst*	Best	Std. Dev.
12	291.75	290.31	0.45115
13	289.66	288.55	0.26106
14	288.80	288.50	0.18901
15	288.46	288.27	0.11668
16	288.26	288.18	0.07314
17	288.18	288.14	0.05173
18	288.14	288.13	0.03390
19	288.12	288.12	0.02360
20	288.11	288.11	0.01730
21	288.11	288.11	0.01013
22	288.11	288.11	0.00705

* of elite samples



- Initial parameter tuple : $(N, N^{\text{elite}}, \alpha) = (800, 20, 0.7)$
- μ_0 : Uniformly drawn from the rectangular area of the data set.
- $\sigma_0 = 14$ (To make initial sampling essentially uniform)
- Stopping : Performance no longer changes within two decimal places or max $\sigma < 10^{-4}$

Banana Data Set, with K = 5 clusters : each algorithm run 10 times

Approach	T	$\bar{\gamma}_T$	γ^*	Ē	$arepsilon_{*}$	$arepsilon^*$	CPU
CE(2)	49.6	288.49	288.11	0.00	0.00	0.01	26.67
KM	9.3	294.31	288.11	0.02	0.01	0.04	0.09
FKM	80.6	290.19	288.11	0.01	0.01	0.01	0.14
LVQ	17.7	302.81	288.11	0.05	0.01	0.19	0.07

- T: Average total number of iterations
- $\bar{\gamma}_T$: Averaged solution
- γ^* : Best known solution
- $\bar{\varepsilon}$: Average relative experimental error w.r.t γ^*
- $\varepsilon^*, \varepsilon_*$: Largest and smallest relative experimental errors
- CPU : Average CPU run time in seconds on a 1.67GHz PC

CE algorithm is :

- Significantly slower; BUT
- More accurate and consistent than the others
- As number of clusters increases, we see :
 - Efficiency (in terms of $\overline{\varepsilon}$, ε_* , ε^*) of CE increases relative to others

We noted :

- CE is slower than the others, so ...
 - Could run the others several times for each run of the CE algorithm
- Next set up :
 - Run CE 10 times, and record the time.
 - Run other algorithms until their time is up.

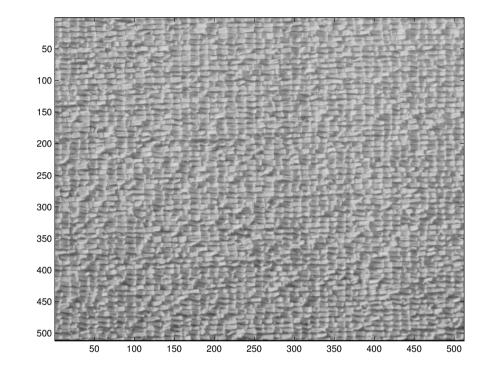
Banana Data Set, with K = 5 clusters

Approach	Min	Max	Mean	Trials	CPU	Av Its
CE(2)	288.11	288.50	288.15	10	211.50	39.3
KM	289.29	549.54	302.16	18803	211.59	10.90
FKM	290.19	290.19	290.19	5253	211.69	75.70
LVQ	289.26	413.96	300.60	7754	211.68	14.96

In this comparison, instructive to look at number of trials and consistency of an approach

CE algorithm is :

- Significantly slower; BUT
- More accurate and consistent than the others; AND
- Outperforms others even over same amount of CPU time

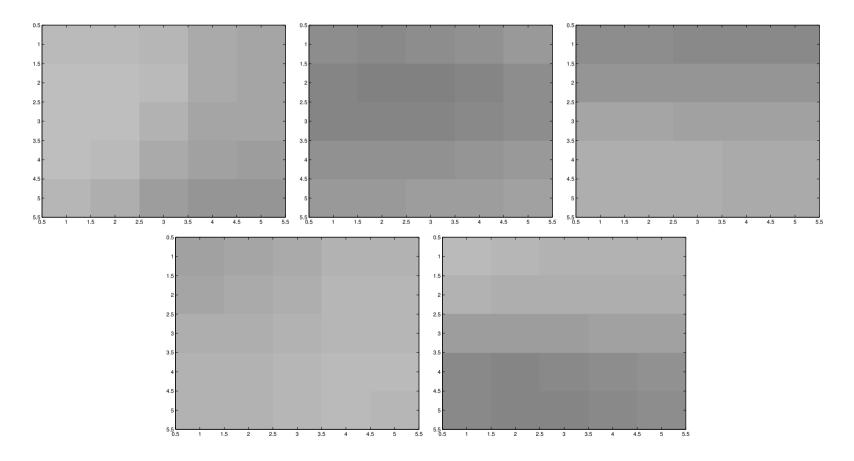


(Raffia texture image, taken from the USC-SIPI Image Database)

Problem: Find five "characteristic" images which "best" distill this test image

Application of the Cross-Entropy Method to Clustering and Vector Quantization -p.23/26

The best five characteristic images found by CE.



Raffia Image Data Set, with K = 5 clusters

Approach	Min	Mean	Max	$\bar{arepsilon}$	$arepsilon_*$	$arepsilon^*$	Trials	CPU	Av Its
CE(2)	83.67	84.21	85.45	0.0065	0	0.0213	10	4057.3	19.2
KM	83.81	84.61	95.80	0.0112	0.0017	0.1450	70363	4057.6	11.67
FKM	91.93	91.93	91.93	0.0987	0.0987	0.0987	13806	4058.7	174.03
LVQ	83.78	84.76	95.81	0.0130	0.0013	0.1451	61847	4057.7	10.12

We presented application of the CE method to clustering and vector quantization problems by:

Generation of random clusters using either

Approach 1 : Independent k-point distributions or,

- Approach 2 : Independent Gaussian distributions
- Followed by updating the associated parameters using cross-entropy minimization.
- Simulations suggest
 - CE Algorithm reliable
 - May be considered as alternative to the standard clustering methods

- Establishing convergence of CE Algorithm for finite sampling
- Establishing confidence regions for the optimal solution
- Application of parallel optimization techniques to the proposed methodology

Acknowledgment: We are most grateful to Uri Dubin for his contributions

This work was partially supported by

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems