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Introduction

The Cross-Entropy Method was originally developed as a
simulation method for the estimation of rare event probabilities:

Estimate P(S(X) ≥ γ)

X: random vector/process taking values in some set X .
S: real-valued function on X .
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Introduction

The Cross-Entropy Method was originally developed as a
simulation method for the estimation of rare event probabilities:

Estimate P(S(X) ≥ γ)

X: random vector/process taking values in some set X .
S: real-valued function on X .

It was soon realised that the CE Method could also be used as an
optimization method:

Determine maxx∈X S(x)
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Some Applications

Combinatorial Optimization (e.g., Travelling Salesman,
Maximal Cut and Quadratic Assignment Problems)

Noisy Optimization (e.g., Buffer Allocation, Financial
Engineering)

Multi-Extremal Continuous Optimization

Pattern Recognition, Clustering and Image Analysis

Production Lines and Project Management

Network Reliability Estimation

Vehicle Routing and Scheduling

DNA Sequence Alignment
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A Multi-extremal Function
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A Maze Problem

The Optimal Trajectory
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A Maze Problem

Iteration 1:
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A Maze Problem

Iteration 2:
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A Maze Problem

Iteration 3:
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A Maze Problem

Iteration 4:
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The Optimisation Setting

Many real-world optimisation problems can be formulated
mathematically as either (or both)

1. Locate some element x∗ in a set X such that

S(x∗) ≥ S(x) for all x ∈ X ,

where S is a objective function or performance measure
defined on X .

2. Find γ∗ = S(x∗), the globally maximal value of the
function.
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The Optimisation Setting

Many real-world optimisation problems can be formulated
mathematically as either (or both)

1. Locate some element x∗ in a set X such that

S(x∗) ≥ S(x) for all x ∈ X ,

where S is a objective function or performance measure
defined on X .

2. Find γ∗ = S(x∗), the globally maximal value of the
function.

X discrete: combinatorial optimisation problem
X continuous: continuous optimisation problem.

The Cross-Entropy Method forMathematical Programming – p. 12/42



A New Approach: CE

Instead of locating optimal solutions to a particular problem
directly, the CE method aims to

locate an optimal sampling distribution

The sampling distribution is optimal if only optimal solutions
can be sampled from it.
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General CE Procedure

First, provide the state space X (whether the states are
coordinates, permutations, or some other mathematical entities)
over which the problem is defined, along with a performance
measure S on this space.

Second, formulate the parameterized sampling distribution to
generate objects X ∈ X . Then, iterate the following steps:

• Generate a random sample of states X1, . . . , XN ∈ X .

• Update the parameters of the random mechanism (obtained via
CE minimization), in order to produce a better sample in the next
iteration.
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General CE Algorithm

1. Initialise the parameters of the algorithm.

2. Generate a random sample from the sampling distribution.

3. Update the parameters of the sampling distribution on the
basis of the best scoring samples, the so-called elite
samples.
This step involves the Cross-Entropy distance.

4. Repeat from Step 2 until some stopping criterion is met.

The Cross-Entropy Method forMathematical Programming – p. 14/42



Degenerate Sampling Distribution

Suppose that there is a unique solution x∗ to the problem.

Then, the degenerate distribution assigns all of the probability
mass (in the discrete case) or density (in the continuous case) to
this point in X .

It is exactly the degenerate distribution from which we wish to
ultimately sample, in order to obtain an optimal solution.
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Detailed Generic CE Algorithm

1. Choose an initial parameter vector, v0. Set t = 1.

2. Generate X1, X2, . . . , XN from the density f(·; vt−1)

3. Compute the sample (1 − ρ)-quantile, γ̂t = S(d(1−ρ)Ne),
locate the elite samples E = {X i : S(X i) ≥ γ̂t}, and
determine

ṽt = argmax
v

∑

Xi∈E

ln f(X i; v).

Set the current estimate for the optimal parameter vector, vt

to: vt = αṽt + (1 − α)vt−1.

4. If the stopping criterion is met, stop; otherwise set
t = t + 1, and return to Step 2.
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Maximum Likelihood

There is a connection between the Cross-Entropy method and
Maximum Likelihood Estimation, which implies a very simple
way of updating the parameter vector:

take the maximum likelihood estimate of the
parameter vector based on the elite samples.

Thus, the sampling distribution comes “closer” at each iteration
to the degenerate distribution, which is the optimal sampling
distribution for the problem.
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Example: The Max-Cut Problem

Consider a weighted graph G with node set V = {1, . . . , n}.
Partition the nodes of the graph into two subsets V1 and V2 such
that the sum of the weights of the edges going from one subset to
the other is maximised.

Example:
3
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Cost matrix (assume symmetric):

C =



























0 c12 c13 0 0 0

c21 0 c23 c24 0 0

c31 c32 0 c34 c35 0

0 c42 c43 0 c45 c46

0 0 c53 c54 0 c56

0 0 0 c64 c65 0



























.

{V1, V2} = {{1, 3, 4}, {2, 5, 6}} is a possible cut. The cost of the
cut is

c12 + c32 + c35 + c42 + c45 + c46.
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Random Cut Vector

We can represent a cut via a cut vector x = (x1, . . . , xn), where
xi = 1 if node i belongs to same partition as 1, and 0 else.

We wish to maximise S(x) via the CE method.
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Generation and Updating Formulas

Generation of cut vectors: The most natural and easiest
way to generate the cut vectors X i = (1, Xi1, . . . , Xin) is to let
Xi2, . . . , Xin be independent Bernoulli random variables with
success probabilities p2, . . . , pn.

Updating formulas: From CE minimization: the updated
probabilities are the maximum likelihood estimates of the
|E| = ρN elite samples:

p̂t,j =

∑

Xi∈E
Xij

|E|
, j = 2, . . . , n .
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Algorithm

1 Start with p̂0 = (1, 1/2, . . . , 1/2). Let t := 1.

2 Generate: Draw X1, . . . , XN from Ber(p̂t). Let γ̂t be

the worst performance of the elite performances.

3 Update p̂t: Use the same elite sample to calculate

p̂t,j =

∑

Xi∈E
Xij

|E|
, j = 2, . . . , n ,

where X i = (1, Xi2, . . . , Xin), and increase t by 1.

4 If the stopping criterion is met, then stop;

otherwise set t := t + 1 and reiterate from step 2.
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Example

Results for the case with n = 400, m = 200 nodes are given
next.

Parameters: ρ = 0.1, N = 1000 (thus |E| = 100).

The CPU time was only 100 seconds (Matlab, pentium III,
500 Mhz).

The CE algorithm converges quickly, yielding the exact
optimal solution in 22 iterations.
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Max-Cut
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Example: Continuous Optimization

-6 -2 2 6
0  
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1  

x

S
(
x
)

S(x) = e−(x−2)2 + 0.8 e−(x+2)2
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Matlab Program

S = inline(’exp(-(x-2).^2) + 0.8*exp(-(x+2).^2)’);

mu = -10; sigma = 10; rho = 0.1; N = 100; eps = 1E-3;

t=0; % iteration counter

while sigma > eps

t = t+1;

x = mu + sigma*randn(N,1);

SX = S(x); % Compute the performance.

sortSX = sortrows([x SX],2);

mu = mean(sortSX((1-rho)*N:N,1));

sigma = std(sortSX((1-rho)*N:N,1));

fprintf(’%g %6.9f %6.9f %6.9f \n’, t, S(mu),mu, sigma)

end
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Numerical Result
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Example: Constrained Optimization

The nonlinear programming problem is to find x∗ that minimizes
the objective function

S(x) =
10
∑

j=1

xj

(

cj + ln
xj

x1 + · · · + x10

)

,

(the ci are constants) subject to the following set of constraints:

x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0,

x4 + 2x5 + x6 + x7 − 1 = 0,

x3 + x7 + x8 + 2x9 + x10 − 1 = 0,

xj ≥ 0.000001, j = 1, . . . , 10.
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The best known solution in Hock & Schittkowski (Test
Examples for Nonlinear Programming Code) was

x∗ = (0.01773548, 0.08200180, 0.8825646, 0.0007233256, 0.4907851,

0.0004335469, 0.01727298, 0.007765639, 0.01984929, 0.05269826),

with S(x∗) = −47.707579. However, using genetic algorithms
Michalewicz (Genetic Algorithm + Data Structures = Evolution
Programs) finds a better solution:

x∗ = (0.04034785, 0.15386976, 0.77497089, 0.00167479, 0.48468539,

0.00068965, 0.02826479, 0.01849179, 0.03849563, 0.10128126),

with S(x∗) = −47.760765.
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Using the CE method we can find an even better solution (in less
time):

x∗ = (0.04067247, 0.14765159, 0.78323637, 0.00141368, 0.48526222,

0.00069291, 0.02736897, 0.01794290, 0.03729653, 0.09685870)

and S(x∗) = −47.76109081 (using ε = 10−4).
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How was it done?

The first step is to reduce the search space by expressing
x1, x4, x8 in terms of the other seven variables:

x1 = 2 − (2x2 + 2x3 + x6 + x10),

x4 = 1 − (2x5 + x6 + x7),

x8 = 1 − (x3 + x7 + 2x9 + x10).

Hence, we have reduced the original problem of ten variables to
that of a function of seven variables, which are subject to the
constraints x2, x3, x5, x6, x7, x9, x10 ≥ 0.000001, and

2 − (2x2 + 2x3 + x6 + x10) ≥ 0.000001,

etc.
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Next step choose an appropriate rectangular “trust region” R that
contains the optimal solution.

Draw the samples from a truncated normal distribution (with
independent components) on this space R. Reject the sample if
the constraints are not satisfied (acceptance–rejection method).

The updating formulas remain the same as for untruncated
normal sampling: update via the mean and variance of the elite
samples.

An alternative is to add a penalty term to S.
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Cross-Entropy: Some Theory

Let X1, . . . , XN be a random sample from f(·; vt−1).
Let γt be the (1 − ρ) quantile of the performance:

ρ = Pvt−1(S(X) ≥ γt), with X ∼ f(·; vt−1).

Consider now the rare event estimation problem where we
estimate ρ via Importance Sampling:

ρ̂ =
1

N

N
∑

i=1

I{S(Xi)≥γt}
f(X i; vt−1)

g(X i),
with X1, . . . , XN ∼ g(·).

A zero variance estimator is g∗(x) :=
I{S(x)≥γt}

f(x;vt−1)

ρ
.

Problem: g∗ depends on the unknown ρ.
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Idea: Update vt such that the “distance” between the densities
g∗ and f(·; vt) is minimal.

The Kullback-Leibler or cross-entropy distance is defined
as:

D(g, h) = Eg log
g(X)

h(X)

=

∫

g(x) log g(x) dx −

∫

g(x) log h(x) dx .

Determine the optimal vt from minv D(g∗, f(·; v)) .

This is equivalent to solving maxv Evt−1 I{S(X)≥γt} log f(X ; v) .
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We may estimate the optimal solution vt by solving the
following stochastic counterpart:

max
v

1

N

N
∑

i=1

I{S(Xi)≥γt} log f(X i; v) ,

where X1, . . . , XN is a random sample from f(·; vt−1).
Alternatively, solve:

1

N

N
∑

i=1

I{S(Xi)≥γt} ∇ log f(X i; v) = 0,

where the gradient is with respect to v.
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The solution to the CE program can often be calculated
analytically (Maximum Likelihood Estimator!).

Note that the CE program is useful only when under vt−1

the event {S(X) ≥ γt} is not too rare, say ρ ≥ 10−3.

By iterating over t we obtain a sequence of reference parameters
{vt, t ≥ 0} → v∗ and a sequence of levels {γt, t ≥ 1} → γ∗.
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Updating Example

Suppose X has iid exponential components:

f(x; v) = exp

(

−

5
∑

j=1

xj

vj

)

5
∏

j=1

1

vj

.

The optimal v follows from the system of equations

N
∑

i=1

I{S(Xi)≥γ} W (X i; u, w)∇ log f(X i; v) = 0.

Since
∂

∂vj

log f(x; v) =
xj

v2
j

−
1

vj

,
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we have for the jth equation

N
∑

i=1

I{S(Xi)≥γ}

(

Xij

v2
j

−
1

vj

)

= 0 ,

whence,

vj =

∑N

i=1 I{S(Xi)≥γ}Xij
∑N

i=1 I{S(Xi)≥γ}

,

Thus the updating rule is here to take the mean of the elite
samples (MLE).
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Conclusions

The CE method optimizes the sampling distribution.

Advantages:

Universally applicable (discrete/continuous/mixed
problems)

Very easy to implement

Easy to adapt, e.g. when constraints are added

Works generally well

Disadvantages:

It is a generic method

Performance function should be relatively cheap

Tweaking (modifications) may be required
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Discussion + Further Research

Synergies with related fields need to be further developed:

Evolutionary Algorithms

Stochastic Approximation

Simulated Annealing

Probability Collectives

Reinforcement Learning

Bayesian Inference

(Multi-actor) game theory
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Discussion + Further Research

Convergence properties need to be further examined:

Continuous optimization (e.g., Thomas Taimre’s thesis)

Rare event simulation (Homem-de-Melo, Margolin)

Significance of various modifications

Role of the sampling distribution

Noisy optimization: very little needs to be changed!

Test problems and “best” code need to be made available:

CE Toolbox: www.maths.uq.edu.au/CEToolBox
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