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Outline

• Telecommunications networks, routing and optimality

• Biological ants and collective problem solving

• Ant-based routing algorithms

• Analytic modelling

• Ants, Markov decision problems, reinforcement learning and game theory

• Exploration, robustness and optimality (or lack thereof !)
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The Network Environment

• packet-based system

• multiple origin-destination node pairs

• routing control → objective: to achieve “optimal routing”
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Inspiration from Nature: Biological Ants

Ants

• deposit chemical pheromone as they travel

• tend to follow trails with highest pheromone concentration

• sometimes explore (follow trails with low or zero concentration)

indirect communication between ants mediated via pheremone

The “swarm” has the potential to carry out collective problem-solving (example:

double-bridge experiment)
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Analogies

How do we create an artificial ant system for a telecommunications network ?

natural artificial

ants information packets

trails network links

trail intersections network nodes

chemical pheromone probabilistic weights

on trail for link choice

pheremone deposition weight increment

pheremone evaporation weight decrement
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Biological versus artificial ants

• Reinforcement of shortest path in double bridge experiment is a result of

ant/pheromone dynamics in the (initial) “transient” period of the experiment, and

is highly dependent on initial conditions.

• Can enhance artificial ants with behaviours and properties which overcome

such limitations - for example, artificial ants perform differential reinforcement of

paths based on delay measurement “after the fact”.
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A typical ant-based routing system

The network:

• A set of nodes S ,

• connected by the set A of directed links.

• Denote by Ni the set of neighbour nodes of node i.
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A typical ant-based routing system

The routing algorithm components:

At every node i, the following values are maintained for every destination node d:

1. A set of trip time estimates Qijd, for all neighbouring nodes j ∈ Ni, where

Qijd constitutes an estimate of the trip time, or delay, associated with travelling

from node i to d using the outgoing link (i, j).

2. A set of ant routing probabilities φijd, for all neighbouring nodes j ∈ Ni,

where φijd is the probability that an ant at node i, with destination d, selects

the outgoing link (i, j).

3. A set of data routing probabilities ψijd, for all neighbouring nodes j ∈ Ni,

where ψijd is the probability that a data packet at node i, with destination d, is

routed via the outgoing link (i, j).
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A typical ant-based routing system

• Ants and data packets share the same network, but are routed according to

different sets of routing probabilities.

• Data packets are passive, and are routed through the network as usual.

• Ants actively measure trip times and feed this information back into the routing

tables by updating the trip time estimates.
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A typical ant-based routing system

Behaviour and functionality of ants:

• Ants are regularly created at all nodes and sent to all possible destination

nodes.

• An ant with origin node o and destination node d is routed according to the ant

routing probabilities, until d is reached.

• On its forward journey, the ant measures and stores trip time information.

• Once d is reached, it re-traces its path back to o.

• The ant updates the appropriate trip time estimates maintained at each of the

nodes on its path.
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Example: sample path

Forward path : {o, 1, 2, d}

Backward path : updateQ2,d,d, Q1,2,d, Qo,1,d

Updates are functions of forward trip time measurements: q2,d,d, q1,2,d, qo,1,d
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A typical ant-based routing system

The ant and data routing probabilities are updated as follows:

φijd := Zi

(

1

Qijd

)β

ψijd := Ẑi

(

1

Qijd

)σ

,

where Zi and Ẑi are normalising constants, and

• β > 0 is an “exploration” parameter

• σ > 0 is a “load-balancing” parameter

• Typically, choose β < σ
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Exploration

In the network context, exploration can be characterized as the “probing” of a

number of possible routes, in order to obtain information about them (even if they

are not currently in use).

Indeed, all “on-line” learning algorithms require an exploration mechanism.

Otherwise,

• cannot adapt to changes in network conditions

• convergence to an optimal solution can be heavily reliant on initial conditions

Exploration → reduce possibility of convergence to sub-optimal solutions

What are the consequences of using randomized routing “polices” as a way of

achieving exploration ?
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Literature: simulation-based studies

• A number of implementations and variations of ant-based routing algorithms

have been proposed (1995 - present).

• All studies have focused on simulation experiments.

• Some of these studies indicate that ant-based routing algorithms have desirable

transient adaptive properties, in response to

– sudden or gradual changes in traffic demands

– isolated node or link failures

Our aim: to gain develop analytic models and theoretical approaches to the study of

ant-based routing algorithms.

Focus: equilibrium (steady-state) behaviour.
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Analytic Model

Update Routing Probabilities

−> Expected Link Flows 
Routing Probabilities

−> Expected Trip Times

Traffic Demands, Link Capacities

Fixed Point

ITERATE
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Analysis

We gain insight into the ant-based algorithm by considering two cases

1. Absence of data traffic, queueing delays negligible, ants experience only fixed

transmission delays

• optimality → a standard shortest path problem

• can be analysed as a Markov decision problem

• highlights fundamental aspects (and limitations) of current ant-based routing

systems

2. Presence of data traffic, queueing delays dominate the dynamics of the system

• optimality → system or user optima

• can be analysed using game theory/constrained nonlinear optimisation

• yields insight into the load-balancing ability of ant-based routing algorithms
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Analysis - fixed link delays

No data traffic demands, ants experience only fixed link transmission delays

fixed delay on link (i, j) = rij .

As a point of reference, consider the “optimalQ-values”

Q∗
ij = rij + J∗

j

where J∗
j is the (optimal) shortest path cost associated with reaching the

destination node d from node j.

A shortest path from any node to d is constructed by selecting at each node i the

outgoing link which satisfies

arg min
(i,l):l∈Ni

{Q∗
il}

until the destination is reached.
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Analysis - fixed link delays

A fixed point of the analytic model has the property that

Qij ≥ Q∗
ij ,

with strict inequality for at least one link.

This is actually not surprising, but does it matter ?
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Analysis - fixed link costs

Example: consider origin node = 1, destination node = 8

1

2 3 4

5

6

7

8

Link delays rij = 1 for all links (i, j)
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Analysis - fixed link delays

A fixed point of the analytic model has the property that

Qij ≥ Q∗
ij ,

with strict inequality for at least one link.

This is not surprising, but does it matter ?

Yes !

It is not always possible to construct a shortest path from all nodes to the destination

by simply selecting outgoing links which satisfy

arg min
(i,l):l∈Ni

{Qij}.
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Analysis - fixed link delays

Inherent sub-optimality in the ant-based system, due to the fact that

Ants employ the same policy for exploration as they do for decision-making

In the language of control theory, the dual tasks of system identification and control

are coupled, and that there is a tradeoff between these tasks.

(Later - this tradeoff can be eliminated by better design !)
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Ants and Markov decision problems

Gain insights into the effect of exploration by considering:

• Underlying problem is a deterministic shortest path MDP

• Ant-based algorithm is an “online” learning algorithm for solving the MDP (c.f.

reinforcement learning)

It can be shown that:

1. Exploration via policy randomization effectively modifies the MDP being solved

2. The modified MDP may have a different optimal policy to the original

3. This can lead to “exploration-induced error”
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A deterministic shortest path (DSP) problem

k µk Jµk

1 (2, 1) (∞,∞)

2 (2, 3) (2, 1)

3 (3, 1) (1, 2)

4 (3, 3) (1, 1)

3

21

1

1

11
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Points: costs of policies µ2, µ3, µ4 applied to DSP problem
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Region: costs of arbitrary randomized polices applied to DS P problem
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Recall that in the ant-based routing algorithm, we had randomized ant routing

policies given by

φij ∝

(

1

Qij

)β

.

In the case of finite fixed link delays and β <∞, we therefore have

φij > 0

for all links (i, j).

Suppose in particular that

φij ≥ ǫ,

where ǫ > 0.
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Region: costs of arbitrary randomized polices applied to DS P problem
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Region: costs of randomized policies subject to φij ≥ ǫ

29



Region: costs of arbitrary randomized polices applied to “ ǫ-modified” MDP
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Example 2: Another deterministic shortest path problem

k µk Jµk

1 (2, 1) (∞,∞)

2 (2, 3) (1.7, 0.7)

3 (3, 1) (2, 3)

4 (3, 3) (2, 0.7)

3
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1

1

0.72
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Points: costs of policies µ2, µ3, µ4 applied to DSP problem
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Region: costs of arbitrary polices applied to DSP problem
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Region: costs of arbitrary randomized polices applied to “ ǫ-modified” MDP
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Reduced exploration level
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Summary of insights from MDP analysis

1. Exploration via policy randomization effectively modifies the MDP that the

ant-based algorithm is attempting to solve

2. The modified MDP may have a different optimal policy to the original

3. This can lead to an error in the identification of the optimal policy by the

ants/learning agents.
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Implications for ant-based routing

• Can try and set exploration level “sufficiently small”...

• ...but difficult to establish this level “a priori”

• Better alternative: de-couple the mechanisms for exploration and

decision-making
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Restrict exploration to first hop

De-couple the mechanisms for exploration and “exploitation” by restricting

exploration to ants’ first hop decision.

“Exploit” links which have minimum delay estimates for all subsequent decisions

until d is reached (greedy routing).

Theorem : (analytic model) provided ants explore on their first hop,

lim
β→∞

Qij = Q∗
ij .

Proof: based on proof of the policy iteration algorithm (dynamic programming).
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Analysis - flow-dependent link delays

Introducing data traffic demands leads to flow-dependent link delays.

expected link delay = expected queueing delay + fixed transmission delay

= d(fij(n)) + rij

For example,

d(fij(n)) =







1
(Cij−fij(n)) if fij(n) < Cij ,

∞ if fij(n) ≥ Cij .

where Cij is the service rate parameter of link (i, j).
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Analysis - flow-dependent link delays

• Data traffic introduces a strong coupling between the traffic routing policy, and

the delays that are experienced by ants and data packets on each link.

• Multiple traffic streams (different origin-destination node pairs) effectively

“compete” for finite shared resources (link capacities).

How to evaluate a given routing policy ?

• A particular routing policy may be beneficial to one traffic stream but detrimental

to another. This leads to the notion of “users”, user optimisation and

user-equilibria

• Alternatively, an average system-wide performance measure can be used to

evaluate a given routing policy, thus leading to the notion of a system optimum.
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Analysis - flow-dependent link delays

Appropriate optimisation concepts

• System optimization (minimize total average flow-weighted delay)

• User optimization

– Nash equilibria (users = traffic stream)

– Wardrop equilibria (users = individual packets)

The Wardrop equilibrium arises as a special limiting case of the more general Nash

equilibrium:

[number of users → ∞, total user demand remains constant, each user’s decisions

has negligible impact on the decisions of other users]
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Traffic optimization and equilibrium

The analysis of traffic equilibria on networks originated with the work of Wardrop

(1952), which developed a means for analysing and characterizing vehicle traffic

flows on road networks.

Wardrop’s First Principle can be stated equivalently in the following three ways:

“The travel times on all used paths between an origin and a destination

point are equal, and less than those which would be experienced by a

single vehicle on any unused path”

or

“No traveler can improve his travel time by unilaterally changing routes”

or

“Every traveler follows the minimum travel time path”.
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Analysis - flow-dependent link delays

Replace “traveler” and “vehicle” with “packet” in the above definitions, we have

Definition of Wardrop equilibrium:

“A data traffic routing policy Ψ corresponds to a Wardrop equilibrium if no packet

can unilaterally decrease its trip time from its origin to the destination by following a

policy that is different to Ψ”.

The Wardrop equilibrium was later shown to be a special case of the Nash

equilibrium, thus establishing a connection between the study of traffic equilibria on

networks and game theory.
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Analysis - flow-dependent link delays

It turns out that system optima are not (systematically) attainable by ant-based

routing algorithms, because

• ants perform delay (trip time) measurements, not marginal delay measurements.

Also, Nash equilibria are not (systematically) attainable by ant-based routing

algorithms, because

• “stateless” routing - each node routes packets according their destination node,

not according to their node of origin.

However, it turns out that ant-based routing algorithms are not incompatible with

Wardrop equilibria.
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Analysis - flow-dependent link delays

Our studies using the analytic model demonstrate that the “heuristic” routing policies

produced by the ant-based routing algorithm are perturbed Wardrop equilibria.

These perturbations result in sub-optimal performance (with respect to both system

and individual packet-based performance measures).

This is due to inherent coupling between the tasks of network exploration and

exploitation.

As before, routing can be made more efficient by de-coupling the mechanisms

which perform these tasks.
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Analysis - flow-dependent link delays

Subject to the following modifications, ant-based routing algorithms are able to

attain Wardrop equilibria, which constitute a form of packet-based optimisation

• ants perform exploration when selecting their first hop node (guarantees

exploration)

• ants follow the current data routing policy for all subsequent link selections (ants

“see” same delays as data packets)

• allow data routing probabilities to take the values 0 and 1 if necessary.
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Summary of Results

1. Using randomized policies as an exploration mechanism:

Flow-dependent link delays → deviations from Wardrop equilibria

analogous to

Fixed link delays → deviations from shortest paths

2. Restricting exploration to agents’ first hop (then follow data routing policy):

Flow-dependent link delays → algorithm finds Wardrop equilibria

analogous to

Fixed link delays → algorithm finds shortest paths
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Discussion

• In current ant-based routing algorithms, optimality is traded for some degree of

robustness

• This tradeoff can be eliminated by de-coupling exploration from data traffic

routing policy (exploitation)

• Concurrence and asynchronism in the real system introduce additional

convergence issues that we have not addressed.
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