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The Network Environment

® packet-based system

e multiple origin-destination node pairs

e routing control — objective: to achieve “optimal routing”




Inspiration from Nature: Biological Ants

Ants
e deposit chemical pheromone as they travel
e tend to follow trails with highest pheromone concentration

e sometimes explore (follow trails with low or zero concentration)

indirect communication between ants mediated via pheremone

The “swarm” has the potential to carry out collective problem-solving (example:

double-bridge experiment)




Analogies

How do we create an artificial ant system for a telecommunications network ?

natural artificial

ants information packets

trails network links

trail intersections network nodes

chemical pheromone probabilistic weights

on trail for link choice

pheremone deposition weight increment

pheremone evaporation weight decrement




Biological versus artificial ants

e Reinforcement of shortest path in double bridge experiment is a result of
ant/pheromone dynamics in the (initial) “transient” period of the experiment, and

is highly dependent on initial conditions.

e Can enhance artificial ants with behaviours and properties which overcome
such limitations - for example, artificial ants perform differential reinforcement of

paths based on delay measurement “after the fact”.




A typical ant-based routing system

The network:
e A setof nodes S,

e connected by the set A of directed links.

e Denote by N, the set of neighbour nodes of node 7.




A typical ant-based routing system

The routing algorithm components:

At every node %, the following values are maintained for every destination node d:

1. A set of trip time estimates Qijd, for all neighbouring nodes 7 € N, where
Qijd constitutes an estimate of the trip time, or delay, associated with travelling

from node ¢ to d using the outgoing link (%, 7).

. A set of ant routing probabilities qbijd, for all neighbouring nodes j & N,

where qbijd is the probability that an ant at node ¢, with destination d, selects

the outgoing link (, 7).

. A set of data routing probabilities wz'jd, for all neighbouring nodes j & N,
where %‘jd is the probability that a data packet at node ¢, with destination d, is

routed via the outgoing link (%, 7).




A typical ant-based routing system

e Ants and data packets share the same network, but are routed according to

different sets of routing probabilities.
e Data packets are passive, and are routed through the network as usual.

e Ants actively measure trip times and feed this information back into the routing

tables by updating the trip time estimates.




A typical ant-based routing system

Behaviour and functionality of ants:

e Ants are regularly created at all nodes and sent to all possible destination

nodes.

e An ant with origin node o and destination node d is routed according to the ant

routing probabilities, until d is reached.
e On its forward journey, the ant measures and stores trip time information.
e Once d is reached, it re-traces its path back to o.

e The ant updates the appropriate trip time estimates maintained at each of the

nodes on its path.
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Example: sample path

Forward path : {0, 1,2,d}

Backward path : update Qg,d,d, Ql,z,d, Qo,l,d

Updates are functions of forward trip time measurements: q2 4.4, 91,2,d» 9o,1.,d
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A typical ant-based routing system

The ant and data routing probabilities are updated as follows:

1 B

. 1 7
%"d = Zz < ) 9
’ Qijd

where Z; and Z; are normalising constants, and
e 3 > (is an “exploration” parameter
e 0 > (is a “load-balancing” parameter

e Typically, choose § < o
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Exploration

In the network context, exploration can be characterized as the “probing” of a

number of possible routes, in order to obtain information about them (even if they

are not currently in use).

Indeed, all “on-line” learning algorithms require an exploration mechanism.

Otherwise,
e cannot adapt to changes in network conditions

e convergence to an optimal solution can be heavily reliant on initial conditions

Exploration — reduce possibility of convergence to sub-optimal solutions

What are the consequences of using randomized routing “polices” as a way of

achieving exploration ?
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Literature: simulation-based studies

e A number of implementations and variations of ant-based routing algorithms

have been proposed (1995 - present).
e All studies have focused on simulation experiments.

e Some of these studies indicate that ant-based routing algorithms have desirable
transient adaptive properties, in response to

— sudden or gradual changes in traffic demands

— isolated node or link failures

Our aim: to gain develop analytic models and theoretical approaches to the study of

ant-based routing algorithms.

Focus: equilibrium (steady-state) behaviour.
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Analytic Model

Traffic Demands, Link Capacities

k Routing Probabilities
—> Expected Link Flows
—> Expected Trip Time

< > ITERATE

Update Routing Probabilities

\> Fixed Poin
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Analysis

We gain insight into the ant-based algorithm by considering two cases
1. Absence of data traffic, queueing delays negligible, ants experience only fixed
transmission delays
e optimality — a standard shortest path problem
e can be analysed as a Markov decision problem
e highlights fundamental aspects (and limitations) of current ant-based routing
systems
2. Presence of data traffic, queueing delays dominate the dynamics of the system
e optimality — system or user optima
e can be analysed using game theory/constrained nonlinear optimisation

e yields insight into the load-balancing ability of ant-based routing algorithms
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Analysis - fixed link delays

No data traffic demands, ants experience only fixed link transmission delays

fixed delay on link (%, j) = ;.

As a point of reference, consider the “optimal ()-values”

Q]_rlj—i_J*

where J ;f is the (optimal) shortest path cost associated with reaching the

destination node d from node j.

A shortest path from any node to d is constructed by selecting at each node ¢ the

outgoing link which satisfies

g min {Qi}

until the destination is reached.
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Analysis - fixed link delays

A fixed point of the analytic model has the property that

Qij > Q5

with strict inequality for at least one link.

This is actually not surprising, but does it matter ?
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Analysis - fixed link costs

Example: consider origin node = 1, destination node = 8

1 5
® ®

7

Link delays r;; = 1 for all links (¢, j)
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Analysis - fixed link delays

A fixed point of the analytic model has the property that
Qij > Q5;,
with strict inequality for at least one link.
This is not surprising, but does it matter ?
Yes |

It is not always possible to construct a shortest path from all nodes to the destination

by simply selecting outgoing links which satisfy

arg. | gl;n {Qij}-
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Analysis - fixed link delays

Inherent sub-optimality in the ant-based system, due to the fact that
Ants employ the same policy for exploration as they do for decision-making

In the language of control theory, the dual tasks of system identification and control

are coupled, and that there is a tradeoff between these tasks.

(Later - this tradeoff can be eliminated by better design !)
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Ants and Markov decision problems

Gain insights into the effect of exploration by considering:
e Underlying problem is a deterministic shortest path MDP

e Ant-based algorithm is an “online” learning algorithm for solving the MDP (c.f.

reinforcement learning)
It can be shown that:
1. Exploration via policy randomization effectively modifies the MDP being solved
2. The modified MDP may have a different optimal policy to the original

3. This can lead to “exploration-induced error”
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A deterministic shortest path (DSP) problem
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Points: costs of policies o, (43, (4 applied to DSP problem

45 T T T T T T T T

4

25



Region: costs of arbitrary randomized polices applied to DS P problem
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4
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Recall that in the ant-based routing algorithm, we had randomized ant routing

8
w(a,)

In the case of finite fixed link delays and 3 < oo, we therefore have

policies given by

qbij>0

for all links (i, 7).

Suppose in particular that

where € > 0.
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Region: costs of arbitrary randomized polices applied to DS P problem
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Region: costs of randomized policies subject to qbij > €
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Region: costs of arbitrary randomized polices applied to “ e-modified” MDP
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Example 2: Another deterministic shortest path problem

1
/\

1
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Points: costs of policies o, 13, (14 applied to DSP problem
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Region: costs of arbitrary polices applied to DSP problem
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Region: costs of arbitrary randomized polices applied to “ e-modified” MDP

5 ! ! ! ! ! !
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Reduced exploration level
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Summary of insights from MDP analysis

. Exploration via policy randomization effectively modifies the MDP that the

ant-based algorithm is attempting to solve
. The modified MDP may have a different optimal policy to the original

. This can lead to an error in the identification of the optimal policy by the

ants/learning agents.
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Implications for ant-based routing

e Can try and set exploration level “sufficiently small”...
e ...but difficult to establish this level “a priori”

e Better alternative: de-couple the mechanisms for exploration and

decision-making
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Restrict exploration to first hop

De-couple the mechanisms for exploration and “exploitation” by restricting

exploration to ants’ first hop decision.

“Exploit” links which have minimum delay estimates for all subsequent decisions

until d is reached (greedy routing).

Theorem : (analytic model) provided ants explore on their first hop,

Jm Qi = Qg

Proof. based on proof of the policy iteration algorithm (dynamic programming).
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Q;;(n) analytic

[
T

link delays r;; = 1 for all links (7, 7), 8 — o0

ant algorithm | optimal ant algorithm | optimal

0 0 Q12 4
1 1 (18 3
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Analysis - flow-dependent link delays

Introducing data traffic demands leads to flow-dependent link delays.

expected link delay expected queueing delay -+ fixed transmission delay
d(fij(n)) + 74

For example,

(Oij—iz;j(n)) it fij(n) < Ciy,
00 it fij(n) > Cij.

d(fij(n)) =

where C}; is the service rate parameter of link (g, 7).
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Analysis - flow-dependent link delays

e Data traffic introduces a strong coupling between the traffic routing policy, and

the delays that are experienced by ants and data packets on each link.

e Multiple traffic streams (different origin-destination node pairs) effectively

“compete” for finite shared resources (link capacities).

How to evaluate a given routing policy ?

e A particular routing policy may be beneficial to one traffic stream but detrimental
to another. This leads to the notion of “users”, user optimisation and

user-equilibria

e Alternatively, an average system-wide performance measure can be used to

evaluate a given routing policy, thus leading to the notion of a system optimum.
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Analysis - flow-dependent link delays

Appropriate optimisation concepts
e System optimization (minimize total average flow-weighted delay)

e User optimization
— Nash equilibria (users = traffic stream)
— Wardrop equilibria (users = individual packets)
The Wardrop equilibrium arises as a special limiting case of the more general Nash
equilibrium:

[number of users — o0, total user demand remains constant, each user’s decisions

has negligible impact on the decisions of other users]
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Traffic optimization and equilibrium

The analysis of traffic equilibria on networks originated with the work of Wardrop
(1952), which developed a means for analysing and characterizing vehicle traffic

flows on road networks.

Wardrop’s First Principle can be stated equivalently in the following three ways:

“The travel times on all used paths between an origin and a destination
point are equal, and less than those which would be experienced by a

single vehicle on any unused path”

“No traveler can improve his travel time by unilaterally changing routes”

“Every traveler follows the minimum travel time path”.
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Analysis - flow-dependent link delays

Replace “traveler” and “vehicle” with “packet” in the above definitions, we have
Definition of Wardrop equilibrium:

“A data traffic routing policy W corresponds to a Wardrop equilibrium if no packet
can unilaterally decrease its trip time from its origin to the destination by following a

policy that is different to W”.

The Wardrop equilibrium was later shown to be a special case of the Nash
equilibrium, thus establishing a connection between the study of traffic equilibria on

networks and game theory.
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Analysis - flow-dependent link delays

It turns out that system optima are not (systematically) attainable by ant-based

routing algorithms, because
e ants perform delay (trip time) measurements, not marginal delay measurements.

Also, Nash equilibria are not (systematically) attainable by ant-based routing

algorithms, because

e ‘“stateless” routing - each node routes packets according their destination node,

not according to their node of origin.

However, it turns out that ant-based routing algorithms are not incompatible with

Wardrop equilibria.
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Analysis - flow-dependent link delays

Our studies using the analytic model demonstrate that the “heuristic” routing policies

produced by the ant-based routing algorithm are perturbed Wardrop equilibria.

These perturbations result in sub-optimal performance (with respect to both system

and individual packet-based performance measures).

This is due to inherent coupling between the tasks of network exploration and

exploitation.

As before, routing can be made more efficient by de-coupling the mechanisms

which perform these tasks.
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Analysis - flow-dependent link delays

Subject to the following modifications, ant-based routing algorithms are able to

attain Wardrop equilibria, which constitute a form of packet-based optimisation

e ants perform exploration when selecting their first hop node (guarantees

exploration)

e ants follow the current data routing policy for all subsequent link selections (ants

“see” same delays as data packets)

e allow data routing probabilities to take the values 0 and 1 if necessary.
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Summary of Results

1. Using randomized policies as an exploration mechanism:

Flow-dependent link delays — deviations from Wardrop equilibria
analogous to

Fixed link delays — deviations from shortest paths

2. Restricting exploration to agents’ first hop (then follow data routing policy):

Flow-dependent link delays — algorithm finds Wardrop equilibria
analogous to

Fixed link delays — algorithm finds shortest paths
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Discussion

e |n current ant-based routing algorithms, optimality is traded for some degree of

robustness

e This tradeoff can be eliminated by de-coupling exploration from data traffic

routing policy (exploitation)

e Concurrence and asynchronism in the real system introduce additional

convergence issues that we have not addressed.
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