Diffusion approximation for a spatially realistic structured metapopulation model

Joshua Ross

http://www.maths.uq.edu.au/~jvr

Discipline of Mathematics and MASCOS
University of Queensland

MASCOS Workshop on Metapopulations - 2004
What is a metapopulation?
What is a metapopulation?

- A Population inhabiting geographically separated habitat
What is a metapopulation?

- A Population inhabiting geographically separated habitat
- Different patch sizes
What is a metapopulation?

- A Population inhabiting geographically separated habitat
 - Different patch sizes
 - Spatial structure
What is a metapopulation?

- A Population inhabiting geographically separated habitat
 - Different patch sizes
 - Spatial structure
 - Heterogenous landscape
Analytical Models

- Presence-absence
Analytical Models

- Presence-absence
- Homogenous patch sizes
Analytical Models

- Presence-absence
- Homogenous patch sizes
- No spatial structure - homogenous mixing
Realistic Models

- Simulation models
Realistic Models

- Simulation models
- Day and Possingham (1995)
 - Variability in patch size and position
 - Discrete-time Markov chain
Realistic Models

- Simulation models

- Day and Possingham (1995)
 - Variability in patch size and position
 - Discrete-time Markov chain

- But...
 - does not account for local population dynamics
 - computationally intensive ($2^k \times 2^k$ for a k-patch system)
My model

- Variability in patch size
My model

- Variability in patch size

- Variability in patch position and inter-patch landscape
My model

- Variability in patch size
- Variability in patch position and inter-patch landscape
- Incorporates local population dynamics
My model

- Variability in patch size
- Variability in patch position and inter-patch landscape
- Incorporates local population dynamics
- Analytically tractable
My model

- Variability in patch size
- Variability in patch position and inter-patch landscape
- Incorporates local population dynamics
- Analytically tractable
- Surprise surprise... a continuous-time Markov chain!
Why do we need such a model?

- Effect of relative patch sizes?
Why do we need such a model?

- Effect of relative patch sizes?
- Effect of spatial arrangements?
Why do we need such a model?

- Effect of relative patch sizes?
- Effect of spatial arrangements?
- Reserve network design and decision theory
Why do we need such a model?

- Effect of relative patch sizes?
- Effect of spatial arrangements?
- Reserve network design and decision theory
- Patch abundance - local population dynamics?
The model - parameters

- k - number of habitat patches
The model - parameters

- k - number of habitat patches

- $n(t) = \{n_1(t), \ldots, n_k(t)\}$ - vector of patch population sizes
The model - parameters

- k - number of habitat patches
- $n(t) = \{n_1(t), \ldots, n_k(t)\}$ - vector of patch population sizes
- $N_i(t)$ - maximum population size at the i-th patch
The model - parameters

- k - number of habitat patches

- $n(t) = \{n_1(t), \ldots, n_k(t)\}$ - vector of patch population sizes

- $N_i(t)$ - maximum population size at the i-th patch

- b - birth parameter
The model - parameters

- \(k \) - number of habitat patches

- \(n(t) = \{n_1(t), \ldots, n_k(t)\} \) - vector of patch population sizes

- \(N_i(t) \) - maximum population size at the \(i \)-th patch

- \(b \) - birth parameter

- \(\gamma_{ij} = \gamma_{ji} \) - migration parameter between patches \(i \) and \(j \)
The model - parameters

- k - number of habitat patches
- $n(t) = \{n_1(t), \ldots, n_k(t)\}$ - vector of patch population sizes
- $N_i(t)$ - maximum population size at the i-th patch
- b - birth parameter
- $\gamma_{ij} = \gamma_{ji}$ - migration parameter between patches i and j
- μ - per-individual death rate
The model - parameters

- k - number of habitat patches
- $n(t) = \{n_1(t), \ldots, n_k(t)\}$ - vector of patch population sizes
- $N_i(t)$ - maximum population size at the i-th patch
- b - birth parameter
- $\gamma_{ij} = \gamma_{ji}$ - migration parameter between patches i and j
- μ - per-individual death rate
- e_i - i-th unit vector
The model - CTMC

We denote the population size at time t by $n(t)$.
We denote the population size at time t by $n(t)$ and assume that $(n(t), t \geq 0)$ is a Markov chain with transition rates

$$Q = (q(i, j), i, j \in S),$$
The model - CTMC

We denote the population size at time t by $n(t)$ and assume that $(n(t), t \geq 0)$ is a Markov chain with transition rates

$$Q = (q(i, j), i, j \in S),$$

so that $q(i, j)$ represents the rate of transition from state i to state j, for $j \neq i$, and $q(i, i) = -q(i)$, where

$$q(i) := \sum_{j \neq i} q(i, j) (< \infty)$$

represents the total rate out of state i.
The model - transition rates

Birth

\[q(n, n + e_i) = b \frac{n_i}{N_i} (N_i - n_i), \quad \forall i \in K \]

Migration

\[q(n, n - e_i + e_j) = \gamma_{ij} \frac{n_i}{N_j} (N_j - n_j), \quad \forall i \neq j, i, j \in K \]

Death

\[q(n, n - e_i) = \mu n_i, \quad \forall i \in K \]

where \(K = \{1, \ldots, k\} \).
Density-dependence

Definition: A one-parameter family of Markov chains \(\{P_\nu, \nu > 0\} \) with state space \(S_\nu \subset \mathbb{Z}^D \) is called density dependent if there exists a set \(E \subseteq \mathbb{R}^D \) and a continuous function \(f : E \times \mathbb{Z}^D \rightarrow \mathbb{R} \), such that

\[
q_\nu(k, k + l) = \nu f \left(\frac{k}{\nu}, l \right), \quad l \neq 0.
\]

[Kurtz (1970)]
Theorem: Suppose that $f(x, l)$ is bounded for each l and that F, where $F(x) = \sum_l lf(x, l)$, is Lipschitz continuous on E. Then, if

$$\lim_{\nu \to \infty} X_\nu(0) = x_0,$$

we have, for fixed $\tau > 0$ and for all $\epsilon > 0$, that

$$\lim_{\nu \to \infty} Pr \left(\sup_{t \leq \tau} |X_\nu(t) - X(t, x_0)| > \epsilon \right) = 0,$$

where $X(\cdot, x)$ is the unique trajectory satisfying

$$X(0, x) = x, \quad X(t, x) \in E, \quad 0 \leq t \leq \tau, \quad \frac{\partial}{\partial t} X(t, x) = F(X(t, x)).$$

[Kurtz (1970)]
Functional central limit theorem

\[\sqrt{\nu} \left(X_\nu(t) - X(t, x_0) \right) \to \text{Gaussian Diffusion} \]

\[\sqrt{\nu} \left(X_\nu(t) - x^* \right) \to N(0, \Sigma_t) \]

Long-term

\[\mathbb{E}(X_\nu) \approx x^* \]

\[\text{Var}(X_\nu) \approx \frac{1}{\nu} \Sigma \quad \text{where} \quad \Sigma = \lim_{t \to \infty} \Sigma_t. \]

[Kurtz (1971)]
Density-dependence

If we take the maximum population size of the metapopulation network, $N = \sum_{i=1}^{k} N_i$, as our index parameter.
Density-dependence

If we take the maximum population size of the metapopulation network, $N = \sum_{i=1}^{k} N_i$, as our index parameter and define $X_i(t) = n_i(t)/N$ to be the population densities and the limiting proportion of patch carrying capacities to be $\rho_i = \lim_{N \to \infty} N_i/N, i \in K = \{1, 2, \ldots, k\}$
Density-dependence

If we take the maximum population size of the metapopulation network, \(N = \sum_{i=1}^{k} N_i \), as our index parameter and define \(X_i(t) = n_i(t)/N \) to be the population densities and the limiting proportion of patch carrying capacities to be \(\rho_i = \lim_{N \to \infty} N_i/N, i \in K = \{1, 2, \ldots, k\} \), we can define a continuous function \(f : E \times \mathbb{Z}^k \to \mathbb{R} \), where
\[
E = \{X \in [0, \rho_1] \times \cdots \times [0, \rho_k]\},
\]
as follows:

\[
f(x, x + e_i) = b \frac{x_i}{\rho_i} (\rho_i - x_i), \quad \forall i \in K
\]

\[
f(x, x - e_i + e_j) = \gamma_{ij} \frac{x_i}{\rho_j} (\rho_j - x_j), \quad \forall i \neq j, i, j \in K
\]

\[
f(x, x - e_i) = \mu x_i, \quad \forall i \in K.
\]
Deterministic approximation

The functional law of large numbers gives us

$$\frac{dx}{dt} = F(x)$$

Therefore we have a system of k differential equations with the i-th given by

$$\frac{dx_i}{dt} = \left(b - \mu - \sum_{j \neq i} \gamma_{ij} \right) x_i + \sum_{j \neq i} \gamma_{ij} x_j + \frac{x_i}{\rho_i} \left[\sum_{j \neq i} \frac{\gamma_{ij}}{\rho_j} x_j (\rho_i - \rho_j) - bx_i \right]$$
Special case - 2 equal patches

\[
\frac{dx_1}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho} x_1 \right) x_1 + \gamma x_2
\]

\[
\frac{dx_2}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho} x_2 \right) x_2 + \gamma x_1
\]
Special case - 2 equal patches

\[
\frac{dx_1}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho} x_1 \right) x_1 + \gamma x_2
\]

\[
\frac{dx_2}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho} x_2 \right) x_2 + \gamma x_1
\]

Fixed points and stability

Trivial fixed point: \((0, 0)\)
Stable if \(b - \mu < 0\), saddle if \(0 < b - \mu < 2\gamma\) and unstable if \(b - \mu > 2\gamma\).
Special case - 2 equal patches

\[
\frac{dx_1}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_1 \right) x_1 + \gamma x_2 \\
\frac{dx_2}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_2 \right) x_2 + \gamma x_1
\]

Fixed points and stability

Trivial fixed point: \((0, 0)\)
Stable if \(b - \mu < 0\), saddle if \(0 < b - \mu < 2\gamma\) and unstable if \(b - \mu > 2\gamma\).

SL fixed point: \(\left(\frac{1}{2b}(b - \mu), \frac{1}{2b}(b - \mu) \right)\)
Unstable if \(b - \mu < -2\gamma\), saddle if \(-2\gamma < b - \mu < 0\) and stable if \(b - \mu > 0\).
Special case - 2 equal patches

\[
\frac{dx_1}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho} x_1 \right) x_1 + \gamma x_2 \\
\frac{dx_2}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho} x_2 \right) x_2 + \gamma x_1
\]

Fixed points and stability

Trivial fixed point: (0, 0)
Stable if \(b - \mu < 0 \), saddle if \(0 < b - \mu < 2\gamma \) and unstable if \(b - \mu > 2\gamma \).

SL fixed point: \(\left(\frac{1}{2b}(b - \mu), \frac{1}{2b}(b - \mu) \right) \)
Unstable if \(b - \mu < -2\gamma \), saddle if \(-2\gamma < b - \mu < 0\) and stable if \(b - \mu > 0 \).

Another pair: Real and saddles if \(|b - \mu| > 2\gamma \).
Special case - 2 equal patches

Deterministic Trajectories and Gradient Field for $b=1, \mu=0.5$ and $\gamma=0.4$
Special case - 2 equal patches

Deterministic Trajectories and Gradient Field for $b=1, \mu=0.5$ and $\gamma=0.2$
Different patch sizes?

Deterministic Trajectories and Gradient Field with $b=1, \mu=0.5, \gamma=0.4$ and $\rho_1=0.3$.
General stability analysis

The nonlinear system can be written in the linearised form

\[
\frac{d\mathbf{x}}{dt} = A\mathbf{x} + h(\mathbf{x})
\]

where

\[
A = \Gamma + (b - \mu)I
\]

in which \(\Gamma \) is a q-matrix with diagonal entries given by \(-\sum_{j \neq i} \gamma_{ij} \) and off-diagonal entries \(\gamma_{ij} \), and \(h(\mathbf{x}) \) consists of higher order terms such that \(||h(\mathbf{x})|| = o(||\mathbf{x}||) \), as \(||\mathbf{x}|| \to 0 \).
General stability analysis

Determine stability by considering the eigenvalues σ of A

$$Ax = \sigma x$$

so we have

$$(b - \mu)x + \Gamma x = \sigma x$$

and therefore

$$\Gamma x = [\sigma - (b - \mu)]x$$

so finally we have

$$\sigma_i = \lambda_i + b - \mu$$

where λ_i is the i-th eigenvalue of Γ.
General stability analysis

Determine stability by considering the eigenvalues σ of A

$$Ax = \sigma x$$

so we have

$$(b - \mu)x + \Gamma x = \sigma x$$

and therefore

$$\Gamma x = [\sigma - (b - \mu)]x$$

so finally we have

$$\sigma_i = \lambda_i + b - \mu$$

where λ_i is the i-th eigenvalue of Γ. Therefore, SL fixed point is always stable if

$$b > \mu.$$
One-dimensional summary

If the patches are close to homogenous in size, we can approximate the equilibrium mean population density by using the logistic model [Verhulst (1838)]

\[
\frac{dy}{dt} = by(1 - y) - \mu y
\]

with equilibrium \(y^* = \frac{1}{b}(b - \mu) \), which is stable if \(b > \mu \), where \(y = \sum_{i=1}^{k} x_i \).

The equilibrium density at each patch will then be given by

\[
x_i^* = \frac{1}{kb}(b - \mu), \quad i = \{1, 2, \ldots, k\}
\]
What I want to do...

- Full analysis of model - fixed points and stability
What I want to do...

- Full analysis of model - fixed points and stability
- Investigate effect of migration parameters and spatial structure
What I want to do...

• Full analysis of model - fixed points and stability
• Investigate effect of migration parameters and spatial structure
• Diffusion approximation - investigate the variances and covariances
What I want to do...

- Full analysis of model - fixed points and stability
- Investigate effect of migration parameters and spatial structure
- Diffusion approximation - investigate the variances and covariances
- Listen to Michael’s talk and then have some pizza!
Acknowledgements

Phil Pollett and Hugh Possingham

Ben Cairns and David Sirl

The University of Queensland

and

AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics and Statistics of Complex Systems