Quasi-stationary distributions and the decay parameter

Hanjun Zhang
Department of Mathematics, University of Queensland
hjz@maths.uq.edu.au

AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics and Statistics of Complex Systems
Outline

Introduction
Outline

- Introduction
- Quasi-stationary distributions
Outline

- Introduction
- Quasi-stationary distributions
- The decay parameter
Outline

- Introduction
- Quasi-stationary distributions
- The decay parameter
- The Generalised Markov Branching Processes (GMBP)
Outline

- Introduction
- Quasi-stationary distributions
- The decay parameter
- The Generalised Markov Branching Processes (GMBP)
- Conclusion
Outline

- Introduction
- Quasi-stationary distributions
- The decay parameter
- The Generalised Markov Branching Processes (GMBP)
- Conclusion
- Further research
Introduction

We consider a continuous-time Markov process \((X_t)\) with a countable state space, taken here to be \(\mathbb{N}_+\), and with a single absorbing state 0.
Introduction

We consider a continuous-time Markov process (X_t) with a countable state space, taken here to be \mathbb{N}_+, and with a single absorbing state 0. Let $Q = (q_{i,j})$ denote the generator, assumed here to be stable, conservative and regular.
We consider a continuous-time Markov process \((X_t)\) with a countable state space, taken here to be \(\mathbb{N}_+\), and with a single absorbing state \(0\).

Let \(Q = (q_{ij})\) denote the generator, assumed here to be stable, conservative and regular.

We denote by \(P = (p_{ij}(t))\) transition probabilities of the minimal process which here is the unique process with generator \(Q\).
We consider a continuous-time Markov process \((X_t)\) with a countable state space, taken here to be \(\mathbb{N}_+\), and with a single absorbing state 0.

Let \(Q = (q_{ij})\) denote the generator, assumed here to be stable, conservative and regular.

We denote by \(P = (p_{ij}(t))\) transition probabilities of the minimal process which here is the unique process with generator \(Q\).

Let \(P_i(\cdot) = P_i(\cdot | X_0 = i)\) and if \(\nu\) is a finite measure on \(\mathbb{N}\), let \(P_\nu = \sum \nu_i P_i\). Here and below any unqualified sum is taken over \(\mathbb{N}\).
Introduction

We consider a continuous-time Markov process \((X_t)\) with a countable state space, taken here to be \(\mathbb{N}_+\), and with a single absorbing state 0. Let \(Q = (q_{ij})\) denote the generator, assumed here to be stable, conservative and regular. We denote by \(P = (p_{ij}(t))\) transition probabilities of the minimal process which here is the unique process with generator \(Q\).

Let \(P_i(\cdot) = P_i(\cdot \mid X_0 = i)\) and if \(\nu\) is a finite measure on \(\mathbb{N}\), let \(P_\nu = \sum \nu_i P_i\). Here and below any unqualified sum is taken over \(\mathbb{N}\).

Finally, assume that \(\mathbb{N}\) is irreducible and that 0 is accessible from some (and hence from every) state in \(\mathbb{N}\).
We further define

\[T = \inf\{t \geq 0 : X(t) = 0\} \]

the absorption (hitting) time at 0. We shall only be interested in processes for which \(E_i T < \infty \) for all \(i \geq 1 \).
A quasi-stationary distribution (qs) $M = (m_i)$ is a probability measure on \{1, 2, \cdots \} with the property that, starting with $M = (m_i)$, the conditional distribution, given the event that at time t the process has not been absorbed, still $M = (m_i)$. That is,

$$\frac{\sum m_i P_i(X(t) = j)}{\sum m_i P_i(X(t) \neq 0)} = m_j. \quad (1)$$
Quasi-stationary distributions

Quasi-stationary distributions for Markov processes and chains have been studied by several authors. Vere-Jones (1962), Seneta and Vere-Jones (1996) and Kingman (1963) studied the case of a general denumerable state space.
Quasi-stationary distributions

Quasi-stationary distributions for Markov processes and chains have been studied by several authors. Vere-Jones (1962), Seneta and Vere-Jones (1996) and Kingman (1963) studied the case of a general denumerable state space.

Actually, there are a great deal of papers (almost over 300 papers) dealing with the qsd's
Quasi-stationary distributions

We now distinguish several related notions; Anderson (1991), Chapter 5 is a good general reference.
Quasi-stationary distributions

We now distinguish several related notions; Anderson (1991), Chapter 5 is a good general reference.

Given $\mu \geq 0$ we call a measure M on \mathbb{N} a μ-invariant measure for Q if for each $j \geq 1$,

$$\sum m_i q_{ij} = -\mu m_j, \quad (4)$$
We now distinguish several related notions; Anderson (1991), Chapter 5 is a good general reference.

Given $\mu \geq 0$ we call a measure M on \mathbb{N} a μ-invariant measure for Q if for each $j \geq 1$,

$$
\sum m_i q_{ij} = -\mu m_j,
$$

and if for all $t > 0$,

$$
\sum m_i p_{ij}(t) = e^{-\mu t} m_j,
$$

it is called μ-invariant on $\{1, 2, \cdots\}$ for P.
M.G. Nair and P.K. Pollett (1993) show that if M is probability distribution on $\{1, 2, \cdots \}$. Then M is a quasi-stationary distribution on $\{1, 2, \cdots \}$ for P if and only if, for some $\mu > 0$, M is μ-invariant on $\{1, 2, \cdots \}$ for P.
We call $M = (m_j) \nu$-the limit conditional distribution (ν-LCD) if ν is a probability measure on $\{1, 2, \cdots\}$ and each $j \geq 1$

$$m_j = \lim_{t \to \infty} P_\nu(X_t = j \mid T > t)$$

exists and is a probability measure on $\{1, 2, \cdots\}$.
Quasi-stationary distributions

We call $M = (m_j) \nu$- the limit conditional distribution (ν-LCD) if ν is a probability measure on $\{1, 2, \cdots\}$ and each $j \geq 1$

$$m_j = \lim_{t \to \infty} P_\nu(X_t = j \mid T > t)$$

(9)

exists and is a probability measure on $\{1, 2, \cdots\}$.

Trivially, any qsd M is an M-LCD.
We call $M = (m_j)$ the limit conditional distribution (ν-LCD) if ν is a probability measure on $\{1, 2, \ldots\}$ and each $j \geq 1$

$$m_j = \lim_{t \to \infty} P_{\nu}(X_t = j \mid T > t)$$

exists and is a probability measure on $\{1, 2, \ldots\}$.

Trivially, any qsd M is an M-LCD.

The ν-LCD is a qsd (Vere-Jones(1996)).
Quasi-stationary distributions

A complete treatment of the qsd problem for a given family of processes should accomplish two things:
Quasi-stationary distributions

A complete treatment of the \textit{qsd} problem for a given family of processes should accomplish two things:

(i) determination of all \textit{qsds}; and
A complete treatment of the \textbf{qsd} problem for a given family of processes should accomplish two things:

(i) determination of all \textbf{qsd}'s; and

(ii) solve the domain of attraction problem, namely, characterize all probability measure ν such that a given \textbf{qsd} M is a ν-LCD.
Quasi-stationary distributions

A complete treatment of the qsd problem for a given family of processes should accomplish two things:

(i) determination of all qsd’s; and

(ii) solve the domain of attraction problem, namely, characterize all probability measure ν such that a given qsd M is a ν-LCD.

Although (i) has been addressed for several cases, details about (ii) are known only for finite Markov processes, and for the subcritical MBP.
Quasi-stationary distributions

We now discuss the existence of qsd for a general Markov Chain.
We now discuss the existence of quasi-stationary distributions (qsds) for a general Markov Chain.

P.A. Ferrari, H. Kesten, S. Martinez and P. Picco (1995) prove the following interesting result which makes no reference to this general theory. They make the following definition of asymptotic remoteness (AR) of the absorbing state: For each $t > 0$

$$\lim_{i \to \infty} P_i(T > t) = 1.$$ \hspace{1cm} (12)

In other words, $T \Rightarrow \infty$ as $i \to \infty$.
Assume that AR condition holds, Ferrari et al. prove that a quasi-stationary distribution (qsd) exists iff

$$E_i(e^{\epsilon T}) < \infty$$

for some $\epsilon > 0$ and $i \in \mathbb{N}$.
Assume that AR condition holds, Ferrari et al. prove that a qsd exists iff

\[\mathbb{E}_i(e^{\varepsilon T}) < \infty \] \hspace{1cm} (14)

for some \(\varepsilon > 0 \) and \(i \in \mathbb{N} \).

Indeed this condition is necessary with, or without, AR condition.
Quasi-stationary distributions

Assume that AR condition holds, Ferrari et al. prove that a qsd exists iff

\[E_i(e^{\epsilon T}) < \infty \] \hspace{1cm} (15)

for some \(\epsilon > 0 \) and \(i \in \mathbb{N} \).

Indeed this condition is necessary with, or without, AR condition.

T. G. Pakes (1994) investigates what happens in a number of examples when AR condition fails. In fact, he examines quite closely two examples which violate AR condition but which nevertheless can have a qsd, showing AR condition is far from being a necessary condition, though it seems essential for the proofs of Ferrari et al.’s theorem.
Quasi-stationary distributions

First we have the following

Proposition 1 The following statements are equivalent:

1. Equation (22) holds, that is,

 \[E_i(e^{\epsilon T}) < \infty \]

 for some \(\epsilon > 0 \) and \(i \in \mathbb{N} \).

2. There is \(\lambda \) with \(0 < \lambda < \inf_{i \geq 1} q_i \) (here \(q_i \equiv -q_{ii} \)) for which the system

 \[
 \sum_{j \neq i} q_{ij} x_j \leq (q_i - \lambda)x_i - 1, \quad i \geq 1, \quad x_0 = 0
 \]

 has a finite non-negative solution.
Secondly we can obtain that the following condition

\[\lim_{i \to \infty} E_i T = \infty \] \hspace{1cm} (17)

can substitute for the AR condition (that is, for each \(t > 0 \)
\[\lim_{i \to \infty} P_i(T > t) = 1 \) which preserves the main result of
Ferrari et all (1995).
Remarks: 1. It is easy to prove that AR condition $\Rightarrow (17)$. So condition (17) is weaker than AR condition.
Remarks: 1. It is easy to prove that AR condition \Rightarrow (17). So condition (17) is weaker than AR condition.

2. As we know, the mean extinction time $E_i T$ is the minimal non-negative solution of the system

$$\sum_{j \geq 0} q_{ij} z_j = -1, \quad i \geq 1, \quad z_0 = 0.$$ \hspace{1cm} (19)

So condition (17) is easier to check than AR condition.
Our main result is as follows

Theorem 1 Assume that Q is stable, conservative and regular, and that Q restricted to $\{1, 2, \cdots\}$ is irreducible. Assume further that (17) holds, that is

$$\lim_{i \to \infty} E_i T = \infty$$

and that $P_i(T < \infty) = 1$ for some (and hence all) i. Then a necessary and sufficient condition for the existence of a qsd is that there is λ with $0 < \lambda < \inf_{i \geq 1} q_i$ for which the system (16) (that is, $\sum_{j \neq i} q_{ij} x_j \leq (q_i - \lambda) x_i - 1$, $i \geq 1$, $x_0 = 0$) has a finite non-negative solution.
The decay parameter

Suppose we have a q-matrix Q over E. Let P be an arbitrary Q-transition function. Suppose that $E = \{0\} \cup C$, where 0 is an absorbing state and $C = \{1, 2, \cdots\}$ is irreducible. The decay parameter λ is defined by

$$\lambda = \lim_{t \to \infty} -\frac{1}{t} \log P_{ij}(t).$$

Kingman showed that this limit exists and is the same for all $i, j \in C$, and that $0 \leq \lambda < \infty$.
The decay parameter

It is called the **decay parameter** because there exist constants \(M_{ij} > 0 \) with \(M_{ii} = 1 \) such that

\[
P_{ij}(t) \leq M_{ij} e^{-\lambda t}, \quad i, j \in C.
\]

Note, in particular, that \(P_{ii}(t) \leq e^{-\lambda t} \).
The decay parameter

It is called the **decay parameter** because there exist constants $M_{ij} > 0$ with $M_{ii} = 1$ such that

$$P_{ij}(t) \leq M_{ij}e^{-\lambda t}, \quad i, j \in C.$$

Note, in particular, that $P_{ii}(t) \leq e^{-\lambda t}$.

Why are we interested in the decay parameter?
The decay parameter

It is called the **decay parameter** because there exist constants $M_{ij} > 0$ with $M_{ii} = 1$ such that

$$P_{ij}(t) \leq M_{ij}e^{-\lambda t}, \quad i, j \in C.$$

Note, in particular, that $P_{ii}(t) \leq e^{-\lambda t}$.

Why are we interested in the decay parameter?

$$\lambda = \sup \{ \alpha : P_{ij}(t) = O(\exp[-\alpha t]) \text{ as } t \to \infty \forall i, j \in C \}.$$
The decay parameter

It is called the **decay parameter** because there exist constants $M_{ij} > 0$ with $M_{ii} = 1$ such that

$$P_{ij}(t) \leq M_{ij} e^{-\lambda t}, \quad i, j \in C.$$

Note, in particular, that $P_{ii}(t) \leq e^{-\lambda t}$.

Why are we interested in the decay parameter?

$$\lambda = \sup \{ \alpha : P_{ij}(t) = O(\exp[-\alpha t]) \text{ as } t \to \infty \forall i, j \in C \}.$$

If $\mu > \lambda$, there does not exist any μ-invariant measure (Pollett 1986); in particularly, there does not exist any qsd if $\lambda = 0$.
Questions? Two obvious problems now arise in the context of the decay parameter, namely,
Questions? Two obvious problems now arise in the context of the decay parameter, namely,

- to give criteria for decay parameter λ to be positive in terms of the rates (q_{ij});
Questions? Two obvious problems now arise in the context of the decay parameter, namely,

- to give criteria for decay parameter λ to be positive in terms of the rates (q_{ij});

- to determine the value of λ, or at least bounds for λ, in terms of the rates (q_{ij}).
The decay parameter

Example 1 Markov branching process (MBP).
The decay parameter

Example 1 Markov branching process (MBP).

We shall adopt the usual notation (Anderson (1991)) in prescribing MBP, that is, let $p_k, k \geq 0$, denote a sequence of non-negative numbers such that $\sum_{k=0}^{\infty} p_k = 1$, and let

$$p(s) = \sum_{k=0}^{\infty} p_k s^k, \quad 0 \leq s \leq 1,$$

denote the probability generating function of this sequence.
The decay parameter

Example 1 Markov branching process (MBP).

We shall adopt the usual notation (Anderson (1991)) in prescribing MBP, that is, let $p_k, k \geq 0$, denote a sequence of non-negative numbers such that $\sum_{k=0}^{\infty} p_k = 1$, and let

$$p(s) = \sum_{k=0}^{\infty} p_k s^k, \quad 0 \leq s \leq 1,$$

denote the probability generating function of this sequence.

$$m = p'(1) = \sum_{k=0}^{\infty} kp_k.$$
The decay parameter

MBP with generator Q is given by

$$q_{ij} = \begin{cases}
0 & \text{if } j < i - 1 \\
-ia(1 - p_i) & \text{if } j = i \\
ipa_{j-i+1} & \text{if } j \geq i - 1, j \neq i.
\end{cases}$$
The decay parameter

MBP with generator Q is given by

$$q_{ij} = \begin{cases}
0 & \text{if } j < i - 1 \\
-ia(1 - p_i) & \text{if } j = i \\
iap_{j-i+1} & \text{if } j \geq i - 1, j \neq i.
\end{cases}$$

It is well known that $P_i(T < \infty) = 1$ iff $m \leq 1$.
The decay parameter

MBP with generator Q is given by

$$q_{ij} = \begin{cases}
0 & \text{if } j < i - 1 \\
-ia(1 - p_i) & \text{if } j = i \\
iap_{j-i+1} & \text{if } j \geq i - 1, j \neq i.
\end{cases}$$

It is well known that $P_i(T < \infty) = 1$ iff $m \leq 1$.

And if $m \leq 1$, then the decay parameter is $\lambda = (1 - m)a$.
The decay parameter

Example 2: The birth and death process
Example 2: The birth and death process

We shall adopt the usual notation in prescribing birth rates \(\lambda_i > 0 \) \((i \geq 1) \), with \(\lambda_0 = 0 \), and death rates \(\mu_i > 0 \) \((i \geq 1) \). Now define by \(\pi_1 = 1 \) and

\[
\pi_n = \prod_{k=2}^{n} \frac{\lambda_{k-1}}{\mu_k}, \quad n \geq 2.
\]

We will assume the process is absorbed with probability 1, that is,

\[
\sum_{n=1}^{\infty} \frac{1}{\pi_n \lambda_n} = \infty.
\]
The decay parameter

In order to state our main results, we need the following notation:

\[Q_n = \left(\frac{1}{\pi_1 \mu_1} + \sum_{j=1}^{n-1} \frac{1}{\pi_j \lambda_j} \right) \sum_{j=n}^{\infty} \pi_j, \quad n \geq 1, \]

and

\[S_0 = \sup_{n \geq 1} Q_n. \]
The decay parameter

Phil Pollett and Hanjun Zhang have obtained the following

Theorem 2 \((4S_0)^{-1} \leq \lambda \leq S_0^{-1}\).

And, hence,

\[\lambda > 0 \quad if \ and \ only \ if \quad S_0 < \infty. \]
The decay parameter

For a general Markov chain, we have the following
The decay parameter

For a general Markov chain, we have the following

Proposition 2 If

\[E_i(e^{\epsilon T}) < \infty \]

(23)

for some \(\epsilon > 0 \) and \(i \in \mathbb{N} \), then the decay parameter \(\lambda > 0 \).
The decay parameter

For a general Markov chain, we have the following

Proposition 2 If

\[E_i(e^{\epsilon T}) < \infty \] \hspace{1cm} (24)

for some \(\epsilon > 0 \) and \(i \in \mathbb{N} \), then the decay parameter \(\lambda > 0 \).

By using **Proposition 1**, we get
The decay parameter

Theorem 3 If there is λ with $0 < \lambda < \inf_{i \geq 1} q_i$ for which the system

$$\sum_{j \neq i} q_{ij} x_j \leq (q_i - \lambda)x_i - 1, \quad i \geq 1, \quad x_0 = 0$$

(25)

has a finite non-negative solution, then the decay parameter $\lambda > 0$.
The decay parameter

Theorem 3 If there is λ with $0 < \lambda < \inf_{i \geq 1} q_i$ for which the system

$$\sum_{j \neq i} q_{ij} x_j \leq (q_i - \lambda) x_i - 1, \quad i \geq 1, \quad x_0 = 0$$

has a finite non-negative solution, then the decay parameter $\lambda > 0$.

I guess the above condition is necessary for the decay parameter $\lambda > 0$.
The decay parameter

Theorem 3 If there is λ with $0 < \lambda < \inf_{i \geq 1} q_i$ for which the system

$$
\sum_{j \neq i} q_{ij} x_j \leq (q_i - \lambda) x_i - 1, \quad i \geq 1, \quad x_0 = 0
$$

has a finite non-negative solution, then the decay parameter $\lambda > 0$.

I guess the above condition is necessary for the decay parameter $\lambda > 0$.

We have the following interesting result:

Corollary If $\sup_{i \geq 1} E_i T < \infty$, then $\lambda > 0$.
R. R. Chen (1997) and Anyue Chen (2002) have discussed the Generalized Markov Branching Processes, the generator Q is given by
R. R. Chen (1997) and Anyue Chen (2002) have discussed the Generalized Markov Branching Processes, the generator Q is given by

$$q_{ij} = \begin{cases}
0 & \text{if } j < i - 1 \\
-i^{\nu}a(1 - p_i) & \text{if } j = i \\
i^{\nu}ap_{j-i+1} & \text{if } j \geq i - 1, j \neq i.
\end{cases}$$

where, as above, $p_k, k \geq 0$, denote a sequence of non-negative numbers such that $\sum_{k=0}^{\infty} p_k = 1$.
And let
\[p(s) = \sum_{k=0}^{\infty} p_k s^k, \quad 0 \leq s \leq 1, \]
denote the probability generating function of this sequence.
The GMBP

And let

\[p(s) = \sum_{k=0}^{\infty} p_k s^k, \quad 0 \leq s \leq 1, \]

denote the probability generating function of this sequence.

\[m = p'(1) = \sum_{k=0}^{\infty} kp_k. \]
And let

\[p(s) = \sum_{k=0}^{\infty} p_k s^k, \quad 0 \leq s \leq 1, \]

denote the probability generating function of this sequence.

\[m = p'(1) = \sum_{k=0}^{\infty} kp_k. \]

It can be seen that the ordinary MBP corresponds to the special case of \(\nu = 1 \).
R.R. Chen obtained the following conclusions

(i) If $\nu > 1$, then Q is regular if and only if $m \leq 1$.
The GMBP

R.R. Chen obtained the following conclusions

(i) If $\nu > 1$, then Q is regular if and only if $m \leq 1$.

(ii) If $\nu \leq 1$, then it is regular if $m < \infty$.
The GMBP

R.R. Chen obtained the following conclusions

(i) If $\nu > 1$, then Q is regular if and only if $m \leq 1$.

(ii) If $\nu \leq 1$, then it is regular if $m < \infty$.

(iii) Assume the given GMBP Q is regular. Then the extinction probability of the corresponding GMBP is 1 if and only if $m \leq 1$.
The GMBP

R.R. Chen obtained the following conclusions

(i) If $\nu > 1$, then Q is regular if and only if $m \leq 1$.

(ii) If $\nu \leq 1$, then it is regular if $m < \infty$.

(iii) Assume the given GMBP Q is regular. Then the extinction probability of the corresponding GMBP is 1 if and only if $m \leq 1$.

Recall that a conservative Q is called regular if the Feller minimal Q-process is honest and thus there exists unique Q-process.
Anyue Chen (2002) obtained the following conclusion

If assume that the probability of eventual extinction is 1, i.e., assume $m \leq 1$. Then for all $i \geq 1$, $E_i T$ are finite if and only if

$$\int_0^1 \frac{1 - y}{p(s) - s} (-\ln y)^{\nu - 1} dy < \infty.$$ \hspace{1cm} (28)
Anyue Chen (2002) obtained the following conclusion:

If assume that the probability of eventual extinction is 1, i.e., assume $m \leq 1$. Then for all $i \geq 1$, $E_i T$ are finite if and only if

$$\int_0^1 \frac{1 - y}{p(s) - s} (-\ln y)^{\nu - 1} dy < \infty. \quad (30)$$

Moreover, if (30) is true, then for all $i \geq 1$

$$E_i T = \frac{1}{\Gamma(\nu)} \int_0^1 \frac{1 - y}{a(p(s) - s)} (-\ln y)^{\nu - 1} dy < \infty. \quad (31)$$

Where $\Gamma(\nu)$ is the gamma function.
The GMBP

We here talk about the positivity of the decay parameter and the existence of \textit{qsd}. The following conclusions are obtained.
The GMBP

We here talk about the positivity of the decay parameter and the existence of qsd. The following conclusions are obtained

Theorem 3 (i) If $m < 1$, and $\nu \geq 1$, then the decay parameter $\lambda > 0$.
The GMBP

We here talk about the positivity of the decay parameter and the existence of qsd. The following conclusions are obtained

Theorem 3 (i) If $m < 1$, and $\nu \geq 1$, then the decay parameter $\lambda > 0$.

(ii) If $m = 1$ and $\nu \geq 2$, then the decay parameter $\lambda > 0$.
The GMBP

We here talk about the positivity of the decay parameter and the existence of qsd. The following conclusions are obtained

Theorem 3

(i) If $m < 1$, and $\nu \geq 1$, then the decay parameter $\lambda > 0$.

(ii) If $m = 1$ and $\nu \geq 2$, then the decay parameter $\lambda > 0$.

(iii) If $m = 1$, $1 < \nu \leq 2$ and $\sum_{k=1}^{\infty} k^2 p_k < \infty$, then there exists a qsd.
Theorem 1 Assume that Q is stable, conservative and regular, and that Q restricted to $\{1, 2, \cdots \}$ is irreducible. Assume further that (17) holds, that is

$$\lim_{i \to \infty} E_i T = \infty$$

and that $P_i(T < \infty) = 1$ for some (and hence all) i. Then a necessary and sufficient condition for the existence of a qsd is that there is λ with $0 < \lambda < \inf_{i \geq 1} q_i$ for which the system (16), that is,

$$\sum_{j \neq i} q_{ij} x_j \leq (q_i - \lambda) x_i - 1, \quad i \geq 1, \quad x_0 = 0$$

has a finite non-negative solution.
Conclusion

The decay parameter plays an important role in studying properties of Markov chains.
Conclusion

The decay parameter plays an important role in studying properties of Markov chains.

If there is λ with $0 < \lambda < \inf_{i \geq 1} q_i$ for which the system

$$
\sum_{j \neq i} q_{ij} x_j \leq (q_i - \lambda)x_i - 1, \quad i \geq 1, \quad x_0 = 0
$$

has a finite non-negative solution, then the decay parameter $\lambda > 0$.

(33)
The decay parameter plays an important role in studying properties of Markov chains.

If there is λ with $0 < \lambda < \inf_{i \geq 1} q_i$ for which the system

$$\sum_{j \neq i} q_{ij} x_j \leq (q_i - \lambda) x_i - 1, \quad i \geq 1, \quad x_0 = 0$$

has a finite non-negative solution, then the decay parameter $\lambda > 0$.

Corollary If $\sup_{i \geq 1} E_i T < \infty$, then $\lambda > 0$.
For every birth-death process satisfying (20), that is,

\[\sum_{n=1}^{\infty} \frac{1}{\pi_n \lambda_n} = \infty. \]

we have

\[(4S_0)^{-1} \leq \lambda \leq S_0^{-1}, \]

and hence

\[\lambda > 0 \quad if \ and \ only \ if \quad S_0 < \infty. \]
Further research

- We wish to prove $\sup_{i \geq 1} E_i T < \infty$, then there exists a qsd.
Further research

- We wish to prove $\sup_{i \geq 1} E_i T < \infty$, then there exists a qsd.

- We will obtain some formulae for the values of the decay parameter in general Markov processes.
I would like to acknowledge the support of the Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems.

Thanks are due to Phil Pollett, Ben Cairns and David Sirl.