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Abstract: In the field of conservation biology, accurate population models are important for managing 
wildlife.  It has been acknowledged that spatial structure should form an integral part of such models.  
Advancement in the power of desktop computers has allowed biologists to construct individual-based, 
spatially-explicit simulation models to predict the population dynamics of species.  These models take into 
account local interactions and output emergent trends.  However, whilst in many cases such models have 
been useful, for large landscapes, they may still be too computationally expensive.  An alternative approach 
is to construct a metapopulation model.  These are usually less computationally expensive, and whilst they 
often incorporate less detail than spatially-explicit models, they may still include enough spatial structure to 
be ecologically realistic.  However, the assumption made in metapopulation models, that any individual 
within a patch can interact with any other individual of the patch may not always be appropriate.  For 
example, in social species where the size of the social group home range is much smaller than the average 
patch size, individuals in a social group from one part of the patch may not interact with individuals from 
another social group in another part the patch.  In such cases it is useful to consider spatial structure within 
the patch itself. 

In this paper we propose using the Shortest Path Voronoi Diagram (SPVD) to model the spatial structure 
within patches for social species.  For such a diagram we use seeds to represent the centres of the social 
groups in each patch.  We then assign each point of the patch to the seed it is closest to (where distance is 
measured with the shortest path metric).  This partitions each patch containing seeds into regions.  Together 
these regions form the SPVD.  By linking the seeds of neighbouring Voronoi regions with shortest paths, a 
network among social groups is created.  This can be used to model the dispersal paths of a population. 

Whilst analytic algorithms exist for the construction of the SPVD, these have often been developed for a 
polygonal domain.  In complex landscapes, the time-complexity of such algorithms may become just as slow 
as grid-based approximations.  Moreover, analytic methods may be less numerically robust and harder to 
extend to more complex variations of the Voronoi diagram.  In this paper we offer a new grid-based 
approximation for the shortest path Voronoi diagram referred to as the quadtree-grid Voronoi Diagram (or q-
grid VD).  The construction procedure involves a decomposition of the landscape into a quadtree, and a 
propagation of circular wavefronts from each seed through a grid that is laid over the quadtree structure.  We 
show how the q-grid VD can be applied to a wildlife population model using a squirrel glider (Petaurus 
norfolcensis) population in a semi-rural landscape as an example.  By averaging outputs across multiple q-
grid VDs we generate a time series of density maps.  Such maps could be useful for informing wildlife 
management. 
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1. INTRODUCTION 

Metapopulation models have been useful in many applications for modelling population dynamics in a spatial 
setting (Hanski 1998).  However, they often do not account for the effects of spatial structure within the patch 
itself.  Spatial models have been developed for continuous habitat, but often in a theoretical setting without 
any consideration for the geometry of the patch (Law et al. 2000); furthermore, they are computationally 
expensive and therefore impractical for use with large landscapes.  In this paper we present a new method for 
modelling the spatial substructure of wildlife populations.  The method is targeted at social species that form 
social groups with home ranges much smaller than patch size.  The development of our method grew out of a 
practical need for a way to model the population dynamics of the squirrel glider.  We decided that the 
traditional metapopulation framework would be unsuitable for this species as patches were too large to ignore 
the effects of space within them; moreover, we decided that other more spatially-explicit models would 
demand too much computer memory and would be too slow given the extent and resolution of the landscapes 
we wished to consider.  The method we developed, models within-patch spatial structure with a new type of 
Voronoi diagram that we refer to as the q-grid VD; this approximates the SPVD. The q-grid VD is inspired 
by grid-based methods for finding shortest paths in the robotics literature.  Chen et al. (1997) use "wave" 
propagation (discussed in section 3) through a modified quadtree (a data structure discussed in Section 2) to 
find shortest-paths.  Our algorithm propagates multiple waves simultaneously through a q-grid from multiple 
seeds to construct a q-grid VD. In this paper we introduce the q-grid VD with a procedure for its construction 
and then show how it can be applied to a population model. 

2. CONCEPTS  

A quadtree is a type of tree data structure that can be constructed from a 2 2n n× binary input array.  Its nodes 
are coloured gray, black, or white.  Every quadtree has at least one node called the root node.  The root's 
colour is determined by the values in the whole input array.  If the input array has values that are all 0 or all 
1, then the root's colour is white or black, respectively, and the quadtree has no more nodes.  If, however, the 
input array has values of both 0 and 1, then the root is coloured gray and is linked to four child nodes.  These 
child nodes are labeled and ordered north-west child, north-east child, south-west child and south-east child, 
and their colours are determined in a similar way by sub-arrays [0:2n-1-1]× [0:2n-1-1], [2n-1:2n-1]× [0:2n-1-1], 
[0:2n-1-1]× [2n-1:2n-1] and [2n-1:2n-1]×  [2n-1:2n-1] respectively of the input array.  If any of these children are 
gray then they are themselves linked to four children whose colours are determined similarly by another 
group of four subarrays, and so on.  (Note: we follow the convention of writing the column coordinate before 
the row coordinate.  Furthermore, for points in the plane, we set the y-axis in a clockwise-perpendicular 
direction from the x-axis.  Both these conventions are followed so that columns and rows easily match up 
with x and y coordinates.)  Gray nodes are referred to as the parent of their children and black and white 
nodes are called leaf nodes or quads.  Figure 1(a) shows a binary input array and Figure 1(b) the resulting 
quadtree.  Gray nodes are drawn with open circles, white nodes with open squares and black nodes with filled 
in squares.  For each quadtree there is a unique input array of smallest dimensions from which it can be 
constructed.  We call this array the quadtree array.  Furthermore, we call each subarray of the quadtree array 
that corresponds to a quad, a quad array.  The quadtree array for the quadtree in Figure 1(b) is identical to 
the array in Figure 1(a).  In Figure 1(b), links between child and parent nodes are drawn with straight-line 
segments.  The children of a parent form part of the row of nodes below the parent and they are drawn from 
left to right in the child order given above. 

 
(a)         (b)       (c) 

Figure 1. (a) A 32 23×  binary input array; (b) the resulting quadtree; (c) and the corresponding planar 
representation with the image of a q-grid shortest path on Q0.  The colours indicate corresponding features.  

We label the red subarray in (a), red node in (b) and red planar representation in (c): Ra, R, and Rp 
respectively.  We label the yellow and blue features similarly: Ya, Y, Yp, BBa, B, BpB .  In (b), circles, open 

squares and filled in squares represent gray, white and black nodes respectively. 
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We will now look at three of the nodes in Figure 1(b).  Since the input array (Figure 1(a)) has values of both 
0 and 1, the root, drawn at the top of Figure 1(b), is gray and is linked to four children.  Its north-east child, 
R, is determined by the values in the subarray Ra.  Since this subarray has values of both 0 and 1, the node R, 
is gray and is linked to four children.  Its north-east child, Y, is determined by the values in the subarray Ya.  
Since this subarray consists entirely of values of 0, the node Y is white, has no children and is called a leaf 
node or quad.  We call Ya the quad array corresponding to Y.  

If we think of the columns and rows of a quadtree array, A, as integer x and y coordinates in the plane, then 
we can think of the quadtree as representing the set [-1/2,2n-1/2]2 2⊆ .  Each node then has a square planar 
representation.  For example, quad B in Figure 1(b), has the square planar representation of BBp in Figure 1(c).  
We call the square planar representation of a node, a quad square, if the node is a quad.  We call the union of 
all white quad squares (including their boundaries) the white space and label it W.  Furthermore, we call the 
union of the boundaries of all quads (white and black) the quad lines.  In Figure 1(c) black and white quad 
squares are coloured accordingly and quad lines are drawn with bold dark gray lines and bold red, blue and 
yellow coloured lines.  Since there is a correspondence between subarrays, nodes and planar representations, 
the term quad can be used loosely to describe a quad array, a leaf node, or a quad square depending on the 
context.  For example, in Figure 1, Ba, B B, and BBp are all essentially the same "quad".  We say two points 

,x y W∈  are quad connected if they are either in the same quad or if there is a sequence of quads  
such that 

1,..., mS S

1x S∈ ,  and the boundary of  intersects with that of my S∈ iS 1iS −  at some points other than corner 
points.  In Figure 1(c), any point in Yp is quad connected to any point in BpB

1 1
.  We define the function 

 by  if x and y are quad connected and { }: 0,Wψ → ( ),x yψ = ( ),x yψ 0=  otherwise.  A quadtree grid (or 

q-grid)  is a finite arrangement of points defined only on the white space.  The q-grid  is called the base 
grid and consists of points in the plane with integer coordinates corresponding to the zero values in the 
quadtree array.  For ,  is finer than 

iQ 0Q

1i ≥ iQ 1iQ − ; to construct  each point in iQ 1iQ −  is replaced by four new 
points that form the corners of a square of width 1/  centred on the point being replaced.  Thus, we define a 
q-grid , with a grid interval of 1/ , by  when 

2i

iQ 2i 2
0Q = ∩W 0i = , and when , by 

. Each point 

1i ≥

( ) { }{ }1 1
01 1

/ 2 , / 2 : ,  and , 1,1i ik k
i k k k kk k

Q x v y w x y Q v w+ +
= =

= + + ∈ ∈ −∑ ∑ ( ),a b  in  has a 

planar region associated with it, namely [-1/2

iQ
i+1+a,1/2i+1+a]× [-1/2i+1+b,1/2i+1+b].  We use the term q-grid 

cell loosely to refer to both ix Q∈  and its planar region.  The union of all boundaries of all such planar 
regions for a q-grid  constitutes the q-grid lines of that q-grid.  In Figure 1(c), the q-grid lines of  are 
drawn with bold light gray lines.  (Note that some are hidden under the quad lines.) 

iQ 0Q

We define a (general) path in W to be a continuous function [ ]: 0,1 Wγ → .  Without giving a precise 

definition we will let ( )L γ  denote its length.  We say (a general path) γ  is a shortest path if 

 where P is the set of all paths from ( ) ( ){inf :L Lγ σ σ= }P∈ ( )0γ  to ( )1γ  in W.  (Note that in practice it 
is often satisfactory to think of a (general) path as the image of such a function.)  A q-grid path is a particular 
type of path.  We say that a path [ ]: 0,1 Wγ →  is a q-grid path on  if iQ ( ) ( )0 , 1 iQγ γ ∈  and if γ  always 
enters and leaves quads along straight-line segments that run perpendicular to the quad lines they cross and 
which join adjacent q-grid cells from either quad.  In Figure 1(c), the image of a q-grid shortest path between 

 and ( )  is drawn with a black line. ( ) 05,5 Q∈ 07,3 Q∈

We can now assign a q-grid distance between pairs of points in .  Precisely, we define the function 

 by  if  and 
iQ

2:i id Q → ( ) ( ){ }, inf :  is a q-grid path from  to  on i id x y L x y Qσ σ= ( ),x yψ = 1 x y≠ ; 

 if ( ), 0id x y = x y= ; and  if ( ),id x y = ∞ ( ),x yψ 0= .  It can be verified that  together with  form a 
metric space and we therefore call  the q-grid metric.  Let k distinct points 

iQ id

id 1,..., k is s Q∈  be called seeds, 
and let { }1,..., kS s s=  be called the seed set; we define the q-grid Voronoi set associated with ms S∈  to be 
all those points in  closer to iQ ms  (in the q-grid metric) than to any other seed; that is, we define the set by: 

( ) ( ) ( ) ( ) ( ) ( ){ }: , 1 and , , , for all , with , ,  only if i m i m i m i n i m i nV s p Q p s d p s d p s m n d p s d p s m nψ= ∈ = ≤ ≠ = <
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We define the q-grid VD to be the collection ( ) ( ) ( ){ }1, ,...,i i i kS d V s V s=V .  For any x W∈  we define 

( )i xβ  to be any element from  that is closest to x; so iQ ( )i xβ  is defined to be any element from the set 

{ }:  for all i iz Q x z x w w Q∈ − ≤ − ∈ .  Now each q-grid Voronoi set ( )i mV s  has a planar representation 

consisting of the union of all the planar representations of the q-grid cells in .  The planar representation of 
 is 

iQ

( )i mV s ( )i mE s  where the set ( )iE g  is defined for any g W∈  to be:  

( ) { } ( ) ( )( ){ }1, : max , 1/ 2  for some ,i
i iu v W u x v y x y V gβ+∈ − − ≤ ∈ .  Figure 2(a) shows the planar 

representation of the q-grid Voronoi diagram on ; 2(b) on ; and 2(c) on .  The black filled in circles 
represent seeds.  The coloured regions represent the sets 

0Q 2Q 6Q

( )i mE s .  Note that in this figure the quadtree 
remains fixed, but the planar representations of the q-grid Voronoi sets change as the q-grid get finer; recall 
also that each q-grid  is defined only in the white space.   (Figure 2 will be discussed further in Section 4.) iQ

3. THE ALGORITHM 

 
Figure 2. Planar representations of a q-grid VD (a) on Q0; (b) on Q2; (c) on Q6.  Open white circles show 
target seed positions and the black filled in circles the q-grid seed positions.  The coloured regions are the 

planar representations of the q-grid Voronoi sets.  Black seeds are linked by q-grid shortest paths. 

We give a brief overview of the core procedure in our algorithm by using the example illustrated in Figure 3.  
In our algorithm the cells of a q-grid  act as data structures each with many fields; here we consider only 
the fields called global_id, id, and dt (which stands for distance transform).  The algorithm assigns values to 
the cells in discrete time at unit intervals.  This process, referred to as propagation, happens in a wave-like 
manner through the q-grid .  When a cell has been assigned values it is said to be covered.  To start with, 
the seeds with which we associate our Voronoi sets are covered.  We refer to these seeds here as zero-seeds.  
They are each covered with a global_id value that is unique amongst seeds across the q-grid, an id value that 
is unique amongst seeds in the same quad, and a dt value of zero.  Zero seeds are shown in Figure 3 as small 
black filled in squares.  After this initialisation, the uncovered cells in each active quad containing zero seeds 
are covered iteratively; at time t > 0, cells that are at a Euclidean distance d from a zero seed, such that 

are covered.  They are assigned the same global_id as the zero seed and a dt equal to d; we say 
that the zero seed has covered these cells.  In Figure 3(a) the state of the quadtree is shown after three time 
iterations.  When a border cell is covered, we prepare any adjacent uncovered cell it may have in an adjacent 
quad to be an entry point for the wave into that quad.  To do this we use a function that searches for a 
neighbouring quad using the links of the quadtree structure.  In Figure 3(a) the border cell at f(7,7) (where 
f:{0,...,15}× {0,...,15}→Q

iQ

iQ

1t d− < ≤ ,t  

3 is defined by f(x,y)=(x/8-7/16,y/8-7/16)) has just been covered and so its 
neighbour at f(8,7) is prepared as an entry.  During the next iteration this cell is covered and its quad becomes 
active; the cell is assigned: a dt equal to the dt at f(7,7) plus one, the same global_id as f(7,7), and an id 
unique amongst the seeds in the quad.  Once covered it is called a time-seed.  In Figure 3(b) f(8,7) is shown 
as a covered time-seed.  A time-seed x can cover cells in its quad at time t > 1 that are at an Euclidean 
distance d from it, such that t-1<d+dt[x]≤  t (where dt[x] denotes the distance transform value at cell x).  
Such cells are assigned a dt equal to dt[x]+d, and a global_id the same as x.  If multiple cells are trying to 
cover a cell y, then y is covered by the competitor cell that can cover it with the smallest dt value.  If multiple 
competitors can achieve this, then y is covered by the competitor with the lowest global_id.  This process of 
propagating values through the q-grid Q , marks out the Voronoi sets.  In Figure 3(d) the red cells belong to i
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the Voronoi set associated with the seed at f(4,7) and the green cells belong to the Voronoi set associated 
with the seed at f(14,14).  

 

 

 

 

 

 

 

 

 
 

 
(a)    (b)    (c)    (d) 
Figure 3. Propagation on Q3 at time 3, 4, 5 and 14 is shown in (a), (b), (c) and (d) respectively.  Small filled 

in black squares represent zero seeds, while time seeds are open.  Shades of red distinguish between the 
regions covered by the different red seeds; similarly for the shades of green. 

4. APROXIMATION 

In this section we state a Theorem and a Corollary that express the approximation properties of the q-grid 
VD.  If W is the white space of a planar representation of a quadtree with a quadtree array of dimensions 

, then W [-1/2,22 2n × n ⊆ n-1/2]2 and N=[-1/2,2n-1/2]2 \W is an open set.  Moreover, N will be a finite union 
of open, path-connected sets that have pair-wise empty intersections.  (Each open set corresponds to the 
interior of a quad-connected region of black quads.)  To simplify the situation we will assume that the pair-
wise intersections of their closures are also empty.  This assumption places the constraint on white quads that 
if any two white quads A and B share only a corner point in common on their boundaries, they must both be 
adjacent to another white quad C such that A and C share more than a corner and C and B share more than a 
corner.   The following theorem can be proven. 

Theorem 
Let ,x y W∈  such that  and suppose that the constraint on N (outlined above) is met; then 

 where  is the true shortest path distance. 

( ),x yψ = 1

)( ) ( )( ) (splim , ,i i ii
d x y d x yβ β

→∞
= spd

This fact can be observed in Figure 2.  The open circles are centred on arbitrary points x in W.  The black 
filled in circles represent the corresponding points in Qi ; namely the points βi(x).  We see that as i gets larger 
(moving from Figure 2(a) to 2(b) to 2(c)) the lengths of the q-grid shortest paths appear to approach a limit 
length.  From this Theorem we conjecture that the following Corollary is true. 

Corollary 
Suppose that the constraint on N is met.  Let 

1,..., kg g  be distinct seeds in W, and let ( )sp mV g  
be the shortest path Voronoi set associated with 

mg ; then for { 1,..., k}g g g∈  it follows that: 

( ) ( ) ( )sp limsup liminfi iii
V g E g E g

→∞→∞
= = . 

5. APPLICATION 

We applied the q-grid VD to a population model 
for the squirrel glider (Petaurus Norfolcensis).  
The squirrel glider is a small aboreal marsupial 
native to Australia whose main form of 
locomotion is that of gliding from tree to tree 
(van der Ree 2003).  It is rare for a squirrel glider 
to move along the ground and its glide length 
generally restricts its dispersal; therefore, the 
squirrel glider can be thought to perceive the 
landscape in a binary way, consisting of habitat 
and non-habitat.  We used the q-grid VD in a 
stochastic simulation model for a glider 

 
Figure 4. Vegetation map for the Albury Ranges and 
Thurgoona area in South Eastern Australia.  (Green 
represents a connected focal patch, white all other 

patches, and black, non-habitat.  North points to the 
top of the page)
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population inhabiting a landscape with a large patch in the Albury Ranges and Thurgoona area of south-
eastern Australia.  The patch is green in Figure 4.  It is approximately 5000 ha which is about  times 
larger than a typical social group home range size.  We constructed a quadtree for the landscape using the 
method of Shaffer and Samet (1987).  A close up of its planar representation is shown in Figure 5(a).  

310

Once the quadtree was constructed we then assigned seeds to the q-grid Q0.  The seed positions were chosen 
randomly and the number of seeds used was determined by K_density*Area/Ceiling; where K_density is the 
density of animals permitted in the landscape at carrying capacity, Area is the total area of habitat in the 
landscape, and Ceiling is a parameter associated with social group size.  Following this we constructed a q-
grid VD using our algorithm and then a network by linking the seeds of neighbouring Voronoi sets in the q-
grid VD with q-grid shortest paths following a similar procedure to Chen et al. (1997).  The Voronoi sets and 
the resulting network were then used to represent social groups and dispersal routes, respectively, in a 
Population Dynamics Module (PDM).  The PDM projected yearly glider numbers for each social group for 
100 years.  We ran the PDM 100 times and for each year averaged the numbers at each social group across 
the runs.  For each social group and for selected years we then converted these numbers into densities, by 
dividing them by the area of the corresponding Voronoi sets (planar representations).  These densities were 
stored in a q-grid type structure according to the positions of their Voronoi sets.  We repeated this whole 
process 30 times with a different random assignment of seeds each time.  By averaging corresponding grid 
cells we were able to produce densitiy maps for selected years.  We choose to replicate the process 30 times 
as this smoothed out the variation in our spatial averaging.  A close up of one of the q-grid VDs and its 
corresponding network is shown in Figure 5(b). 

 
(a)      (b) 

Figure 5. (a) A close up of a quadtree planar representation and (b) a close up of a q-grid VD and its 
corresponding network for an arbitrary part of the landscape shown in Figure 4. 

In the PDM, dispersal between social groups followed a random walk on the network.  Juveniles dispersed 
after a year with distance given by an exponential distribution with a mean of 3km; after dispersing this 
distance they attempted to join the social group they reached.  Dispersers that reached social groups that were 
at carrying capacity were made to die.  Any male and female within a social group were permitted to breed if 
neither was a parent of the other, and if they were not full siblings.  Successful breeding events between 
males and females produced a number of offspring based on a Poisson distribution with mean 2.  Individual 
survival was determined by a set probability.   

In Figure 6 we present some density map outputs from our model when an annual survival probability of 0.55 
was used.  The six maps shown have been cropped to focus on the central patch in the landscape.  The figure 
shows population density declining until most of the landscape is close to a zero density at year 60.  In 
another model run with a survival probability of 0.57, population density after 100 years varied across the 
landscape with some parts close to carrying capacity and other parts close to zero.  For a survival of 0.6 most 
of the landscape was at carrying capacity after 100 years.  We also looked at the effect of varying the Ceiling 
parameter in our model.  We found that increasing this parameter (which decreases the number of seeds used) 
led to higher densities across the landscape at lower survivals.  This suggests that accounting for less spatial 
structure in a population model than there actually is could lead to an overestimation in population viability.  
Our aim in this section, however, is not to give a detailed analysis of our results but to simply demonstrate 
that our method can be applied to a real landscape; it is intended that a more detailed analysis of our results 
will be described elsewhere. 
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Figure 6. A time series of 6 density maps for the focal patch in Figure 4.  Clockwise from top left, the maps 
show predicted squirrel glider densities for years 10 to 60 ahead in ten-year intervals.  Each map represents 
model outputs averaged over 30 q-grid VDs with 100 population dynamics simulations averaged for each q-
grid VD.  The shades of gray indicate the density with white representing K_density and black a zero density. 

6. FUTURE WORK AND CONCLUSION 

There is a way to extend our model to landscapes with more categories than simply habitat and non-habitat.  
The different categories would have weights associated with them and the spatial structure would be 
modelled with a weighted q-grid VD.  Szczerba et al. (1998) developed a path algorithm for such a setting.  
They used wave propagation, with waves travelling more slowly through quads with larger weights.   In our 
extension, multiple waves from seeds would be propagated through a weighted q-grid.  As before, the 
landscape would be distilled into a network linking social groups; but this time the links would have costs 
associated with them. 

Whilst theoretical exact methods for SPVD construction have been described, the method described in this 
paper may be useful for the following reasons.  Firstly, our method leads to grid-based outputs that are easily 
analysised in a computational setting.  Secondly, it is likely that the extension to our model would have a 
better time complexity than exact methods; Szczerba et al. (1998) noted a much better time complexity for 
their path approximation than exact methods.  Future work could systematically compare different 
approaches. 

In conclusion, the q-grid VD is a useful method for modelling the spatial substructure within wildlife 
populations.  It is especially useful in social species that form in groups with home ranges much smaller than 
patch size.  Moreover, averaging population dynamics simulations over multiple q-grid VDs enables the 
construction of density maps that could be useful in wildlife management.  This is particularly true because 
they pinpoint density to a specific spatial location. 
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